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ABSTRACT
The equation

(*) —Ou+qu+ f(z,u)= Ay, ué€ Wl'z(]RN)

is considered, where ¢ is bounded below and ¢(z) — oo as |z| — 00. Un-
der appropriate conditions on the perturbation term f(z,u) it is shown
that given any r > 0, (*) has an infinite sequence (An,r)nen of eigenval-
ues, each Ay, » being associated with an eigenfunction un,r which satisfies
Jgn lun,r|? = r?. Information about the behaviour of Aq,, for large n
is provided. The proofs rely on the compactness of the embedding of a
certain weighted Sobolov space in an L? space; this is proved in §2.

1. Introduction

Let g be a smooth real-valued function on R (N > 3) such that ¢(z) — oo as
|z} — oo, and suppose that g is bounded below by some positive number. Then

it is well-known that the problem

~Au+qu=Ju, ueWHYRY)

Received July 25, 1991

179



180 R. CHIAPPINELLI AND D. E. EDMUNDS Isr. J. Math.

has a sequence (A3) of positive eigenvalues, each repeated according to multi-
plicity, with A% < X0, for all n € N and A} — 00 as n — oo. These may
be characterised, by the classical Courant principle, as minimax values of the

quadratic functional ¢g, where
1
bo(w) =3 [ {17 + a(@lu(e)P)ds,
RN

on the surface {u : [pv |u(z)|*dz = constant}. Note that ¢o is well-defined for
precisely those u belonging to the weighted Sobolev space

2(RNY .= .
qu (RN := {u : /IRN(lvu|2 + qu?)dz < oo},

which is plainly contained in W'?(RN); the discreteness of the spectrum of
—A + q is equivalent to the compactness of the embedding of W;’Z(RN ) in
L*(RM) (see [5], Chap. VIII). Under appropriate additional conditions on ¢
the asymptotic behaviour of the counting function

No(N):= ) 1

A%<

can be determined: it then turns out (see [5], Chap. XI) that as A — oo,

(4) No(3) ~ ne)™ [ (= o(a)){"ds

where wy is the volume of the unit ball in RY and g(A) ~ h()\) means that
g(A)/h(X) = 1 as A — oco. A particular case in which formula (A) holds occurs
(see [5], Chap XI) when there is a constant a > 1 and positive constants a;, a2, a3
such that for all z,y € RV,

a1(l2]* —1) < ¢(2) < ax(fo]* +1)

and
la(z) — ¢()] < aslz - yl(max{|z|, |y[})*~".

In the present paper we consider non-linear perturbations of problem (L) of

the form

(NL) —Au+qu+ f(z,u) = u, ue WH(RN),
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where it is supposed that

f:R¥N xR— R is continuous and such that for some
(H) a>0 andbe L*(RV),

|f(z,8)] < alslP=! +(z), 2<p<2N/(N -2)
for all z € RY and all s € R. Under this assumption, the functional

6= [ {FI7l + J@MuGa)F + e ute s,

where F(z,u) = [ f(z,3)ds, is well-defined and of class C* on W}'*(R¥), and
(weak ) solutions of (NL) can be sought as critical points of ¢ under the constraint
Jgn [u(z)*dz = constant. Now if W} (RN} is compactly embedded in LP(RV),
where p is as in (H), then ¢ will satisfy the Palais-Smale condition, so that if in
addition,

(0) f(z,-8) = —f(z,s) forall (z,s) R xR,

then a standard application of the Liusternik-Schnire'mann (LS) minimax the-
ory ([2],[8]) will establish the existence of infinitely many eigenvalue-eigenfuction
pairs solving (NL).

Thus as in the linear case, the existence of countably many eigenvalues of (NL)
hinges on the fact that a certain embedding is compact. In §2 we use a simple
interpolation argument to prove that if 1 < ¢ < N and ¢ < p < t*, where t* is
the Sobolev conjugate of ¢, then W;"(RN ) is compactly embedded in LP(RY).
In the subsequent sections we use a similar interpolation inequality, giving a
bound for the L? norm of u in terms of its L? and W} norms, first to verify the
requirements of the LS theory and then to estimate the eigenvalues of (NL). Our
final result is as follows:

THEOREM: Assume that f satisfies (O) and (H) with 2 < p < 2+ 4N}, and
suppose also that f(z,s)s > 0 for all (z,s) € RN x R. Then for each r > 0, (NL)
has an infinite sequence (An,r)neN of eigenvalues, each A, » being associated with
an eigenfunction u, . satisfying [on |un (z)|*dz = r?, such that

Anr =A%+ O((X3)%),
where a = (p — 2)N/4.

Under suitable extra conditions on g it then follows that as A — oo,

Ny(A) := 1 ~wy(2r)~V A= g(z))Yda.
)= 3 1unten) [ 0-aen?
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For work on the asymptotic distribution of eigenvalues of quasilinear elliptic op-
erators on bounded subsets of R we refer to Chiappinelli ([3],[4]) and Moscatelli
and Thompson [7].

2. Interpolation inequalities and compactness

We recall that when ¢ € [1, 00) the norm on the Sobolev space W (R )is [ - 1,
where

[t = [ (va(@l + @)Y

given any measurable subset Q of RV and any p € [1,00] we shall denote the
norm on L?(Q) by | - | p.q, writing | | ,g¥ = | - |, for simplicity. For any
¢ : R¥ — R which is measurable and positive almost everywhere, the weighted
Sobolov space W;"(RN ) is defined to be the space of all (equivalence classes
of) real functions u with distributional derivatives -3‘% (#=1,...,N) such that

11t
100 o= { [ wats q|u|‘>dx}
RN

is finite. If there is a positive constant ¢ such that ¢(z) > ¢ for all z € RY, then
W3#(RY) is a Banach space when endowed with the norm | - | 1,64; if N > ¢, it
is continuously embedded in LP(RN) for all p € [t,t*], where t* = Nt/(N —t) is
the Sobolev conjugate of t. Indeed, for any such ¢, clearly

(1) | ul1,e < const.| u| 1,4,

that is, W;"(RN } is continuously embedded in W¢(RV). Moreover, we know
that W]*(R¥) is continuously embedded in LP(RN) for any p € [t,t*] (see [5],
Theorem V.3.7); that is,

(2) {ul p < const.|ufy,.

Our object here is to establish the compactness of the embedding of W;"(RN )
in LP(RY) under appropriate conditions. We begin with an interpolation in-
equality.

PROPOSITION 1: Let ¢ : RN — R be measurable and such that for some ¢ > 0,
g(z) 2 cforallz € RN, let t € [1,N) and p € [t,t*], and define 8 = B(p) by

(3) B(p) =t(t" — p)/(t* - 1).
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Then given any v € [0, 8(p)), there exists C > 0 such that for all u € W}*(RV),
(4) lul < Clul{ |ulT0

Moreover, if t < p < t*, then there is a positive constant C such that for all
measurable subsets Q of RN and all u € W}*(RY),

(5) ful o S CQ) ul ],

where

QQ) =11/4l -
Proof: (i) If v = 0, (4) follows directly from (1) and (2). If 0 < 4 < ¢, then by
Halder’s inequality,

/;N |u(z)Pdz = /RN u(z)|"|u(z)|?~"dz

v/t (t=v)/t
s( / |u(z)|'dz) ( / au(z)ﬁp'”'/“-ﬂdz) ,
RN RN

that is,

(6) lulp <ful w377
where

(") s=(p-7/(t-7)

Note that s > ¢ for any vy € (0,t), while s < ¢* if, and only if, v < B(p). It follows
that if p € (¢,¢*], then v < B(p) < t and (4) results from (6) and (2). In the
remaining case, in which v = B(p) =t = p, (4) is trivial.

(ii) To prove (5) we argue in a similar fashion. For any measurable Q c R¥

we have
/ lu(z)Pdz = / (¢(2)) P/ (g(2))PHfu(z)P d
Q Y]
<11/q %1%, / (¢(2))*u(z)Pda.
Q

If p = ¢t then § = t and the proof of (5) is thus accomplished.
Ht<p<t*, put

| @@ tu@pds = [ (o u@) )P
& Q
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Thus the use of Holder’s inequality as above, with v replaced by 8, yields

1
| @@y ueyras < ( L. q(z)|u(z)|‘dz) PTE
<Clul . lulbzh
=C| | ’l’,t,q‘
The inequality (5) is now immediate. |

THEOREM 2: Let q be as in Proposition 1 and suppose that ¢(z) — oo as |z| —
oo;let t € [1,N) and t < p < t*. Then the embedding of W}*(R¥) in LP(R¥) is

compact.

Proof: Let (u,) be a bounded sequence in W}*(R), so that there exists M > 0
such that for all n € N,

(8) | unl 1,t,q S M

As in Proposition 1 let Q(2) =|1/q| i{fﬂ, and for each R > 0 set Qr = Q(Qr),
where Qg = {z € R¥;|z| > R}. From (5) and (8) we have for all m,n € N,

/RN [um(z) — un(z)|Pdz = ~/|z|<R [um(z) — un(z)|Pdz + /ﬂn |um(z) — un(z)|Pdz
< [ lun(z) = un(a)PPdz + CQa2MY".
lz]|<R

The assumptions on ¢ imply that @Qr — 0 as R — oo; thus given any ¢ > 0,
there exists Ry > 0 such that for all m,n.€ N and all R > Ry,

/ lum(z) — un(z)Pdz < / lum(2) — un(2)[Pdz +é.
RN |z|<R

Since W1*(£) is compactly embedded in L?(2) when @ = B(O, R), the open
ball in RV with centre O and radius R, we see that there is a subsequence (un(x))
of (un) which converges in LP(R¥), and the result follows. |

3. Existence of eigenvalues

We say that (u,)) is an eigenfunction-eigenvalue pair of (NL) if u € H :=
WiA(RN), u#0, A € R and

9) (Vu - Vv + quv + f(z,u)v)dz = /\/ uvdz
RN RN
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for all v € H; it is assumed that N > 3. The function f is subject to the condition

f:R¥ xR — R is continuous and such that for some a > 0

®) and b€ L*(RY),
|f(z,8)} < a|s|P~! + b(z) forsome pe€[2,2N/(N —~2)] andall
(z,8) e RN xR.

Setting F(z,u) = [, f(z,s)ds and

8= 5 [ (0wl +alulids + | Pla,u(e)is
(10) = o)+ [ f@ e
) o) =3 [ lulds,

we see that (9) may be rewritten as
(12) ¢'(u)v = Ag'(u)v forallveH,

where ¢'(u),¢'(u) denote the derivatives of ¢,g at the point u. Thus to find
eigenfunctions of (NL) with given L(R") norm, for fpn u?dz = r?, say, consists
in finding critical points of ¢ on the manifold

(13) M, = {u € H:g(u)= %ﬂ},

the corresponding eigenvalues appearing as Lagrange multipliers. Note that if
(u, A) is such a solution pair, then A = r=2¢'(u)u , as follows from (12) on taking
v=u.
THEOREM 3: Let ¢ be as in Theorem 2; assume that (H) and (O) hold and that
either

(H1) (H) holds with 2<p<2+4N~!
or
(H2) f(z,8)s >0 forall (z,s) e RN xR.

Then given any r > 0, there are denumerably many eigenfunction-eigenvalue
pairs (Un,r, An,r) of (NL) with fIRN uﬁ',da: = r? for all n € N, while as n — oo,

(14) / (ivun,rl2 + quf,,,)dz —+ 00, /\n,,. — 00.
RN
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Proof: Foreach r >0 and n € N set
(15) Ka(r) = {K C M, : K compact and symmetric, v(K) > n}

(where 4(K) denotes the genus of K [8], corresponding to the original category

of Liusternik and Schnirel’mann) and
(16) en(r) = Klil(f;) sup 24(u).

By the Liusternik-Schnirel'mann principle (see, for example, Theorem 20 in
Browder [2]), it will be enough to show that ¢ is bounded below on M, and
satisfies the Palais-Smale condition on M, to ensure that the c,(r) are attained
and are critical levels of ¢ on M,; that is, there exist un,r € My, As r € R such
that

1 2¢(un,r) = ca(r)
and
(18) ¢'(“n,r) = ’\n,rgl(“n.r)-

We give below the proof when f satisfies (H1); the case in which it satisfies (H2)
can be dealt with in a similar manner but is simpler as then F(z,s) > 0 and thus

#(u) > do(u).
(1) To prove that ¢ is bounded below on M, for each r > 0, we first note that
(H) implies that
|F(z,8)] < c[s]? + b(z)ls]

so that, by the Schwarz inequality,
1/2
(19) / Iz, u(z))|dz < ¢ / lu(z)[Pdz + d( / |u(z)(2dz)
RN RN RN

where d = | b| 5. Similarly

(20) /R |f(@u@u(e)lde < ¢ /R lu(z)Pds +d( /R ) |u(z)|2d:c)1/2.

Next we use inequality (4) with v = §; on setting 2a = (p — 8) = (p — 2)N/2,
this becomes

(21) |ul2 < Clulf vy,
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and we conclude that on M;,
(22) /R 1P, u(e)lde S orf] o] 35, +rd

This implies that, in particular,

26(u) = 24o(u) + 2/RN F(z,u(z))dx
(23) >luli,, - erf| uf 1%,—1d (ueM,).

The desired result now follows since the assumption p < 2 + 4N ™! is equivalent
to a < 1. In fact this shows that ¢ is coercive on M,, that is, ¢(u) — oo if
| u] 1,2, = 00, u € M.

(ii) (The Palais-Smale condition). We have to show that any sequence (u,)
in M, along which ¢(u,) is bounded and ¢.(u,) — 0 contains a convergent
subsequence; here ¢!, denotes the derivative of ¢ along M., namely

$r() = ¢'(w) — r7%(¢' (u)u)g'(u).

Define operators A, B,C in H by the rules that for all u,v € H,

(Au,v) = AN(Vu - Vv + quv + f(z,u)v)dz
= (u, v) + (Cu,v)’
(Bu,v) = /RN uvdz,

where (-, -) stands for the inner product in H. Thus
¢'(u)v = (Au,v), ¢'(u)v = (Bu,v)
for all u,v € H. Hence
¢! (u)v = (Au,v) — r~%(Au,u)(Bu,v)
and the condition ¢.(u,) — 0 in the dual H' of H is equivalent to

(24) Ar(uq) := Auy — 172 (Aup,uq)Bu, = 0
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in H. The key fact in the proof that the Palais-Smale condition holds is that
B and C are compact. To show this, first note that if G denotes the Nemytskii
operator induced by f, then C can be viewed as the composition

B PRY) S P RY) = (P@RYY S B B

where & denotes isometric isomorphism; thus essentially, C = i* o Goi. By
the growth assumption on f, G : L*(RY) — L?'(RV) is continuous and maps
bounded sets onto bounded sets (see [6]); since ¢ is compact, by Theorem 2, it
follows that C is compact. The compactness of B is established in a similar
manner.

Now let (u,) be a sequence in M, such that (¢(u,)) is bounded and A,(un) —
0. Then for some ¢y > 0 and all n € N, it follows from (23) that

co 2 2¢(un) 2 | unl fﬂ'q —erP ug| %:'2,7 —rd,

and so | un| 1,2,§ < ¢) for some ¢,; that is, (u,) is bounded. Since B is compact,
there is a subsequence of (u,), denoted again by (u,) for convenience, such that
(Bu,) is convergent. Also, the real sequence with n't term

(Atn,un) = | un| %,Z,q + (Cun,un)

is bounded and we may assume, by passage to a subsequence, that it converges,
too; thus by (24), (Auy,) converges. But A = I+ C, where I is the identity map;
as C is compact we may again suppose that (Cu,) is convergent, and so (u,) is
convergent, as required.

(iii) We now prove the relations (14) concerning um,r and A, on the as-
sumption that the critical levels ¢, (r) — o0 as m — co. For a proof that this
assumption holds we refer the reader to [4] (a similar argument appears on page
365 of Krasnosel’skii’s book [6]); the argument hinges upon the properties of the
genus together with the facts that ¢ is coercive on M, and M, is weakly closed
in H since H is compactly embedded in L(R™).

First observe that, by (19) and (4) (with ¥ = 0)

26(0) = 200(u) +2 [ Fle,ule)de < [ul 2t ol wlLag +lulsag
R
Since 2¢(un,r) = ca(r) — 00, it follows that | us ¢ 1,2,§ = 00. Moreover, by (18),

(25) "zl\n,r = ¢’(un,r)“n.r = /N {IVu,,,,.lz + quf,,,. + f(z, u,.,r)u,.,,-}d:c.
R



Vol. 81, 1993 EIGENVALUE ASYMPTOTICS 189

From (20) we see that, just as in the proof of (22), we have

/RN |f(z,u)u|dz < crﬂ] ul %;,q +rd
for all u € M,.. Thus
"ZAn,r 2 | un,rl ?,Z,q - c"ﬁ| Un,r| ?fxz,q —rd.

As | #ny] 1,2, = 00 and @ < 1, this implies that A, — 00 as n — oco. The
proof of Theorem 3 is complete. 1

4. Asymptotic behaviour of eigenvalues

Here we improve the result obtained in Theorem 3 that the ‘non-linear’ eigen-
values A, tend to 0o as n — 0o by comparing them with the eigenvalues of the
linear problem (L). To do this we use the following

LEMMA 4: Let g be as in Theorem 3 and let {)\% : n € N} be the set of all
eigenvalues of (L), arranged in increasing order and repeated according to mul-
tiplicities. Then for each r > 0,

(26) r220 = inf sup2do(u)
Ka(r) K

where Ky(r) is as in (15).

This is a reformulation, based on the properties of the genus, of the Courant
minimax principle: for the proof, see [3] or (in a slightly different context) Section
6.7 of Berger’s book [1).

THEOREM 5: Let ¢ be as in Theorem 3; assume that f satisfies (O) and both
(H1) and (H2). For each r > 0, let A, be the eigenvalues of (NL) given by
Theorem 3. Then for any r > 0,

Anr =22 +0((A2)), a=(p-2)N/4<1.

Proof: By the estimate (22),

$(u) = do(u) + /R , Fla,u(z))dz
@7 < do(u) + crP(do(u))* +rd
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for all u € M,. If g : R — R is a continuous non-decreasing function, it is
straightforward to check that for any n € N,

A0f sup 9(2¢0(u)) = ¢ ( Jof sup 2¢o(u)),
so that, if 2¢(u) < g(2¢o(u)) on M,, then Lemma 4 shows that
= i < 1 = 2)0 .
ca(r) = inf sup24(u) < inf supg(24e(u)) = 9(r°As)
Using this with g(¢) =t + crft® + rd we have, by (27),
en(r) S 2% 4 erPH2e(\0) 4 rd.
Also, by the sign assumption (H2),
o) = dofu) + [ Fa,u(@))de 2 dofu),

and thus
en(r) 2 inf sup2de(u) = r2Al.
Ka(r) K

We therefore have that
(28) lea(r) = r2A%) < erfF2o(\0) 4 rd.
On the other hand, (17) and (18) yield
en(r) = dnr = 26(un,r) — ¢'(un,r)un,r
and hence, writing for simplicity u, instead of uy,r,
en(r) =i o, = A . {|Vun|? + qu + 2F(z, un(z))}dz
= [ (7l + 0+ £z, (e un o
= [ (2P un(e) - £z, un(a))un}e.
Use of (22) and the similar bound for [ f(z,u)udz thus gives

lea(r) = r?Xnrl < crf(¢o(ua))™ +rd
< cr3(¢(un))°’ +rd
(29) < erP(en(r))® + rd.
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Note that the above estimates hold under the ‘general’ growth condition (H).
However, under the restriction p € (2,2 4+ 4/N) imposed by (H1), then « =
(p—2)N/4 < 1 and (28) gives in particular

cn(r) ~ 7'2/\?l
as n — 00, for each fixed r > 0. Together with (29) this yields
len(r) = 2 Aa o < erPF2(A0)® 4 1d,
and (28) and (29) now give
2 Ane = A2 < arP(A2)® +rd

or
[An,r = 22| < erP~2(A0)* 4 r1d.

In other words,

Anr =20 +0((A)%)

for each fixed r > 0; thus in particular A, , ~ A% as n — co. The proof of the

Theorem is complete. |

Note that if ¢ satisfies appropriate additional conditions, then the asymptotic
estimate (A) holds for No(A) = 3250, 1, and in fact Ny(}) is bounded above
and below by constant multiples of A* for some a > 0: see [5}, Chapter XI, §3.
Theorem 5 then shows that if g satisfies these extra conditions, then for each
r>0,

M= ¥ 1~onea™ [ (- @) s
AnrSA RY

as A — oo.
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