EIGENVALUE ASYMPTOTICS AND A NON-LINEAR SCHRÖDINGER EQUATION

BY

R. CHIAPPINELLI

Dipartimen~o di Ma~ema~ica, Universfl~ della Calabria 87036 Arcavacata di Rende (Us), l~aly

AND

D. E. EDMUND\$

Mathematics Division, University of Sussex $Falmer,$ Brighton BN1 9QH, England

ABSTRACT

The equation

$$
(*) \qquad \qquad -\Delta u + qu + f(x,u) = \lambda u, \quad u \in W^{1,2}(\mathbb{R}^N)
$$

is considered, where q is bounded below and $q(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Under appropriate conditions on the perturbation term $f(x, u)$ it is shown that given any $r > 0$, (*) has an infinite sequence $(\lambda_n, r)_{n \in \mathbb{N}}$ of eigenvalues, each $\lambda_{n,r}$ being associated with an eigenfunction $u_{n,r}$ which satisfies $\int_{\mathbb{R}^N} |u_{n,r}|^2 = r^2$. Information about the behaviour of $\lambda_{n,r}$ for large n is provided. The proofs rely on the compactness of the embedding of a certain weighted Sobolov space in an L^p space; this is proved in §2.

1. Introduction

Let q be a smooth real-valued function on \mathbb{R}^N $(N \geq 3)$ such that $q(x) \to \infty$ as $|x| \to \infty$, and suppose that q is bounded below by some positive number. Then it is well-known that the problem

$$
(L) \qquad \qquad -\Delta u + qu = \lambda u, \quad u \in W^{1,2}(\mathbb{R}^N)
$$

Received July 25, 1991

has a sequence (λ_n^0) of positive eigenvalues, each repeated according to multiplicity, with $\lambda_n^0 \leq \lambda_{n+1}^0$ for all $n \in \mathbb{N}$ and $\lambda_n^0 \to \infty$ as $n \to \infty$. These may be characterised, by the classical Courant principle, as minimax values of the quadratic functional ϕ_0 , where

$$
\phi_0(u) = \frac{1}{2} \int_{\mathbb{R}^N} {\{ |\nabla u(x)|^2 + q(x) |u(x)|^2 \} dx},
$$

on the surface $\{u : \int_{\mathbb{R}^N} |u(x)|^2 dx = \text{constant}\}$. Note that ϕ_0 is well-defined for precisely those u belonging to the weighted Sobolev space

$$
W_q^{1,2}(\mathbb{R}^N):=\bigg\{u:\int_{\mathbb{R}^N}(|\nabla u|^2+qu^2)dx<\infty\bigg\},\,
$$

which is plainly contained in $W^{1,2}(\mathbb{R}^N)$; the discreteness of the spectrum of $-\Delta + q$ is equivalent to the compactness of the embedding of $W_q^{1,2}(\mathbb{R}^N)$ in $L^2(\mathbb{R}^N)$ (see [5], Chap. VIII). Under appropriate additional conditions on q the asymptotic behaviour of the counting function

$$
N_0(\lambda) := \sum_{\lambda_n^0 \leq \lambda} 1
$$

can be determined: it then turns out (see [5], Chap. XI) that as $\lambda \to \infty$,

(A)
$$
N_0(\lambda) \sim \omega_N(2\pi)^{-N} \int_{\mathbb{R}^N} (\lambda - q(x))_+^{N/2} dx
$$

where ω_N is the volume of the unit ball in \mathbb{R}^N and $g(\lambda) \sim h(\lambda)$ means that $g(\lambda)/h(\lambda) \to 1$ as $\lambda \to \infty$. A particular case in which formula (A) holds occurs (see [5], Chap XI) when there is a constant $a > 1$ and positive constants a_1, a_2, a_3 such that for all $x, y \in \mathbb{R}^N$,

$$
a_1(|x|^a-1) \le q(x) \le a_2(|x|^a+1)
$$

and

$$
|q(x)-q(y)|\leq a_3|x-y|(\max\{|x|,|y|\})^{a-1}.
$$

In the present paper we consider non-linear perturbations of problem (L) of the form

$$
(NL) \t -\Delta u + qu + f(x, u) = \lambda u, \quad u \in W^{1,2}(\mathbb{R}^N),
$$

where it is supposed that

(H)
$$
\begin{cases}\nf: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R} \text{ is continuous and such that for some} \\
a > 0 \text{ and } b \in L^2(\mathbb{R}^N), \\
|f(x, s)| \le a|s|^{p-1} + b(x), \quad 2 \le p \le 2N/(N-2)\n\end{cases}
$$

for all $x \in \mathbb{R}^N$ and all $s \in \mathbb{R}$. Under this assumption, the functional

$$
\phi(u)=\int_{\mathbb{R}^N}\left\{\frac{1}{2}|\nabla u(x)|^2+\frac{1}{2}q(x)|u(x)|^2+ F(x,u(x))\right\}dx,
$$

where $F(x, u) = \int_0^u f(x, s) ds$, is well-defined and of class C^1 on $W_q^{1,2}(\mathbb{R}^N)$, and (weak) solutions of (NL) can be sought as critical points of ϕ under the constraint $\int_{\mathbb{R}^N} |u(x)|^2 dx = \text{constant}$. Now if $W_q^{1,2}(\mathbb{R}^N)$ is compactly embedded in $L^p(\mathbb{R}^N)$, where p is as in (H), then ϕ will satisfy the Palais-Smale condition, so that if in addition,

(0)
$$
f(x,-s) = -f(x,s) \quad \text{for all} \quad (x,s) \in \mathbb{R}^N \times \mathbb{R},
$$

then a standard application of the Liusternik-Schnirel'mann (LS) minimax theory $([2],[8])$ will establish the existence of infinitely many eigenvalue-eigenfuction pairs solving (NL).

Thus as in the linear case, the existence of countably many eigenvalues of (NL) hinges on the fact that a certain embedding is compact. In $\S2$ we use a simple interpolation argument to prove that if $1 \leq t < N$ and $t \leq p < t^*$, where t^* is the Sobolev conjugate of t, then $W_q^{1,t}(\mathbb{R}^N)$ is compactly embedded in $L^p(\mathbb{R}^N)$. In the subsequent sections we use a similar interpolation inequality, giving a bound for the L^p norm of u in terms of its L^2 and $W_q^{1,2}$ norms, first to verify the requirements of the LS theory and then to estimate the eigenvalues of (NL). Our final result is as follows:

THEOREM: Assume that f satisfies (O) and (H) with $2 \le p < 2 + 4N^{-1}$, and suppose also that $f(x, s)$ s ≥ 0 for all $(x, s) \in \mathbb{R}^N \times \mathbb{R}$. Then for each $r > 0$, *(NL) has an infinite sequence* $(\lambda_{n,r})_{n\in\mathbb{N}}$ *of eigenvalues, each* $\lambda_{n,r}$ *being associated with* an eigenfunction $u_{n,r}$ satisfying $\int_{\mathbb{R}^N} |u_{n,r}(x)|^2 dx = r^2$, such that

$$
\lambda_{n,r} = \lambda_n^0 + O((\lambda_n^0)^\alpha),
$$

where $\alpha = (p-2)N/4$.

Under suitable extra conditions on q it then follows that as $\lambda \to \infty$,

$$
N_r(\lambda) := \sum_{\lambda_{n,r} \leq \lambda} 1 \sim \omega_N(2\pi)^{-N} \int_{\mathbb{R}^N} (\lambda - q(x))_+^{N/2} dx.
$$

For work on the asymptotic distribution of eigenvalues of quasilinear elliptic operators on *bounded* subsets of \mathbb{R}^N we refer to Chiappinelli ([3],[4]) and Moscatelli and Thompson [7].

2. Interpolation inequalities and compactness

We recall that when $t \in [1, \infty)$ the norm on the Sobolev space $W^{1,t}(\mathbb{R}^N)$ is $|\cdot|_{1,t}$, where

$$
| u |_{1,t}^{t} = \int_{\mathbb{R}^N} \{ |\nabla u(x)|^{t} + |u(x)|^{t} \} dx;
$$

given any measurable subset Ω of \mathbb{R}^N and any $p \in [1,\infty]$ we shall denote the norm on $L^p(\Omega)$ by $|\cdot|_{p,\Omega}$, writing $|\cdot|_{p,\mathbb{R}^N} = |\cdot|_{p}$ for simplicity. For any $q: \mathbb{R}^N \to \mathbb{R}$ which is measurable and positive almost everywhere, the weighted Sobolov space $W_q^{1,t}(\mathbb{R}^N)$ is defined to be the space of all (equivalence classes of) real functions u with distributional derivatives $\frac{\partial u}{\partial x_i}$ $(i = 1, ..., N)$ such that

$$
| u |_{1,t,q} := \left\{ \int_{\mathbb{R}^N} (|\nabla u|^t + q |u|^t) dx \right\}^{1/t}
$$

is finite. If there is a positive constant c such that $q(x) \ge c$ for all $x \in \mathbb{R}^N$, then W_a^1 ^t(\mathbb{R}^N) is a Banach space when endowed with the norm $|\cdot|_{1,t,q}$; if $N > t$, it is continuously embedded in $L^p(\mathbb{R}^N)$ for all $p \in [t, t^*]$, where $t^* = Nt/(N-t)$ is the Sobolev conjugate of t . Indeed, for any such q , clearly

(1)
$$
|u|_{1,t} \le \text{const.} |u|_{1,t,q}
$$

that is, $W_q^{1,t}(\mathbb{R}^N)$ is continuously embedded in $W^{1,t}(\mathbb{R}^N)$. Moreover, we know that $W_q^{1,t}(\mathbb{R}^N)$ is continuously embedded in $L^p(\mathbb{R}^N)$ for any $p \in [t, t^*]$ (see [5], Theorem V.3.7); that is,

$$
(2) \t\t\t |u|_p \le \text{const.} |u|_{1,t}.
$$

Our object here is to establish the *compactness* of the embedding of $W^{1,t}_a(\mathbb{R}^N)$ in $L^p(\mathbb{R}^N)$ under appropriate conditions. We begin with an interpolation inequality.

PROPOSITION 1: Let $q : \mathbb{R}^N \to \mathbb{R}$ be measurable and such that for some $c > 0$, $q(x) \geq c$ for all $x \in \mathbb{R}^N$, let $t \in [1, N)$ and $p \in [t, t^*]$, and define $\beta = \beta(p)$ by

(3)
$$
\beta(p) = t(t^* - p)/(t^* - t).
$$

Then given any $\gamma \in [0, \beta(p)]$, there exists $C > 0$ such that for all $u \in W_q^{1,t}(\mathbb{R}^N)$,

$$
(4) \t\t |u|_p^p \leq C |u|_t^{\gamma} |u|_{1,t,q}^{p-\gamma}
$$

Moreover, if $t \leq p \lt t^*$, then there is a positive constant C such that for all measurable *subsets* Ω of \mathbb{R}^N and all $u \in W_q^{1,t}(\mathbb{R}^N)$,

$$
(5) \t\t |u|_{p,\Omega}^p \le CQ(\Omega) |u|_{1,t,q}^p.
$$

where

$$
Q(\Omega) = | \ 1/q | \ \substack{\beta/t \\ \infty,\Omega}.
$$

Proof: (i) If $\gamma = 0$, (4) follows directly from (1) and (2). If $0 < \gamma < t$, then by H61der's inequality,

$$
\int_{\mathbb{R}^N} |u(x)|^p dx = \int_{\mathbb{R}^N} |u(x)|^{\gamma} |u(x)|^{p-\gamma} dx
$$
\n
$$
\leq \left(\int_{\mathbb{R}^N} |u(x)|^t dx \right)^{\gamma/t} \left(\int_{\mathbb{R}^N} |u(x)|^{(p-\gamma)t/(t-\gamma)} dx \right)^{(t-\gamma)/t},
$$

that is,

(6)
$$
|u|_p^p \leq |u|_t^{\gamma} |u|_s^{p-\gamma}
$$

where

(7)
$$
s = (p - \gamma)t/(t - \gamma).
$$

Note that $s \geq t$ for any $\gamma \in (0, t)$, while $s \leq t^*$ if, and only if, $\gamma \leq \beta(p)$. It follows that if $p \in (t, t^*]$, then $\gamma \leq \beta(p) < t$ and (4) results from (6) and (2). In the remaining case, in which $\gamma = \beta(p) = t = p$, (4) is trivial.

(ii) To prove (5) we argue in a similar fashion. For any measurable $\Omega \subset \mathbb{R}^N$ we have

$$
\int_{\Omega} |u(x)|^p dx = \int_{\Omega} (q(x))^{-\beta/t} (q(x))^{\beta/t} |u(x)|^p dx
$$

\n
$$
\leq |1/q| \frac{\beta/t}{\infty,\Omega} \int_{\Omega} (q(x))^{\beta/t} |u(x)|^p dx.
$$

If $p = t$, then $\beta = t$ and the proof of (5) is thus accomplished. If $t < p < t^*$, put

$$
\int_{\Omega} (q(x))^{\beta/t} |u(x)|^p dx = \int_{\Omega} \{ (q(x)^{1/t} |u(x)|)^{\beta} |u(x)|^{p-\beta} dx.
$$

Thus the use of Hölder's inequality as above, with γ replaced by β , yields

$$
\int_{\Omega} (q(x))^{\beta/t} |u(x)|^p dx \leq \left(\int_{\mathbb{R}^N} q(x) |u(x)|^t dx \right)^{\beta/t} |u|_{(p-\beta)t/(t-\beta)}^{p-\beta}
$$

\n
$$
\leq C |u|_{1,t,q}^{\beta} |u|_{1,t,q}^{p-\beta}
$$

\n
$$
= C |u|_{1,t,q}^p.
$$

The inequality (5) is now immediate.

THEOREM 2: Let q be as in Proposition 1 and suppose that $q(x) \rightarrow \infty$ as $|x| \rightarrow$ ∞ ; let $t \in [1, N)$ and $t \leq p < t^*$. Then the embedding of $W_q^{1,t}(\mathbb{R}^N)$ in $L^p(\mathbb{R}^N)$ is *compact.*

Proof: Let (u_n) be a bounded sequence in $W_q^{1,t}(\mathbb{R}^N)$, so that there exists $M > 0$ such that for all $n \in \mathbb{N}$,

$$
(8) \t\t\t |u_n|_{1,t,q} \leq M
$$

As in Proposition 1 let $Q(\Omega) = |1/q| \frac{\beta}{\infty, \Omega}$, and for each $R > 0$ set $Q_R = Q(\Omega_R)$, where $\Omega_R = \{x \in \mathbb{R}^N; |x| \ge R\}$. From (5) and (8) we have for all $m, n \in \mathbb{N}$,

$$
\int_{\mathbb{R}^N} |u_m(x) - u_n(x)|^p dx = \int_{|x| < R} |u_m(x) - u_n(x)|^p dx + \int_{\Omega_R} |u_m(x) - u_n(x)|^p dx
$$
\n
$$
\leq \int_{|x| < R} |u_m(x) - u_n(x)|^p dx + C Q_R(2M)^p.
$$

The assumptions on q imply that $Q_R \to 0$ as $R \to \infty$; thus given any $\epsilon > 0$, there exists $R_0 > 0$ such that for all $m, n \in \mathbb{N}$ and all $R > R_0$,

$$
\int_{\mathbb{R}^N} |u_m(x)-u_n(x)|^p dx \leq \int_{|x|
$$

Since $W^{1,t}(\Omega)$ is compactly embedded in $L^p(\Omega)$ when $\Omega = B(0,R)$, the open ball in \mathbb{R}^N with centre O and radius R, we see that there is a subsequence $(u_{n(k)})$ of (u_n) which converges in $L^p(\mathbb{R}^N)$, and the result follows.

3. Existence of eigenvalues

We say that (u, λ) is an eigenfunction-eigenvalue pair of (NL) if $u \in H :=$ $W_q^{1,2}(\mathbb{R}^N), u \neq 0, \lambda \in \mathbb{R}$ and

(9)
$$
\int_{\mathbb{R}^N} (\nabla u \cdot \nabla v + q u v + f(x, u)v) dx = \lambda \int_{\mathbb{R}^N} u v dx
$$

for all $v \in H$; it is assumed that $N \geq 3$. The function f is subject to the condition

(H)

$$
\begin{cases}\nf: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R} \text{ is continuous and such that for some } a > 0 \\
\text{and} \quad b \in L^2(\mathbb{R}^N), \\
|f(x,s)| \le a|s|^{p-1} + b(x) \text{ for some } p \in [2, 2N/(N-2)] \text{ and all } (x,s) \in \mathbb{R}^N \times \mathbb{R}.\n\end{cases}
$$

Setting $F(x, u) = \int_0^u f(x, s) ds$ and

$$
\phi(u) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + q|u|^2) dx + \int_{\mathbb{R}^N} F(x, u(x)) dx
$$

$$
= \phi_1(u) + \int_{\mathbb{R}^N} f(x, u(x)) dx
$$

(10)
$$
= \phi_0(u) + \int_{\mathbb{R}^N} f(x, u(x)) dx,
$$

(11)
$$
g(u) = \frac{1}{2} \int_{\mathbb{R}^N} |u|^2 dx,
$$

we see that (9) may be rewritten as

(12)
$$
\phi'(u)v = \lambda g'(u)v \text{ for all } v \in H,
$$

where $\phi'(u), g'(u)$ denote the derivatives of ϕ, g at the point u. Thus to find eigenfunctions of (NL) with given $L^2(\mathbb{R}^N)$ norm, for $\int_{\mathbb{R}^N} u^2 dx = r^2$, say, consists in finding critical points of ϕ on the manifold

(13)
$$
M_r = \left\{ u \in H : g(u) = \frac{1}{2}r^2 \right\},\,
$$

the corresponding eigenvahes appearing as Lagrange multipliers. Note that if (u, λ) is such a solution pair, then $\lambda = r^{-2} \phi'(u) u$, as follows from (12) on taking $v=u.$

THEOREM 3: *Let q be as* in *Theorem 2; assume that (H) and (0) hold and that* either

(H1)
$$
(H) holds with 2 \leq p < 2 + 4N^{-1}
$$

or

$$
(H2) \t f(x,s)s \geq 0 \t for all \t (x,s) \in \mathbb{R}^N \times \mathbb{R}.
$$

Then given any $r > 0$, there are denumerably many eigenfunction-eigenvalue *pairs* $(u_{n,r}, \lambda_{n,r})$ of (NL) with $\int_{\mathbb{R}^N} u_{n,r}^2 dx = r^2$ for all $n \in \mathbb{N}$, while as $n \to \infty$,

(14)
$$
\int_{\mathbb{R}^N} (|\nabla u_{n,r}|^2 + qu_{n,r}^2) dx \to \infty, \quad \lambda_{n,r} \to \infty.
$$

Proof: For each $r > 0$ and $n \in \mathbb{N}$ set

(15)
$$
K_n(r) = \{K \subset M_r : K \text{ compact and symmetric, } \gamma(K) \ge n\}
$$

(where $\gamma(K)$ denotes the *genus* of K [8], corresponding to the original *category* of Liusternik and Schnirel'mann) and

(16)
$$
c_n(r) = \inf_{K_n(r)} \sup_K 2\phi(u).
$$

By the Liusternik-Sehnirel'mann principle (see, for example, Theorem 20 in Browder [2]), it will be enough to show that ϕ is bounded below on M_r and satisfies the Palais-Smale condition on M_r to ensure that the $c_n(r)$ are attained and are critical levels of ϕ on M_r ; that is, there exist $u_{n,r} \in M_r$, $\lambda_{n,r} \in \mathbb{R}$ such that

$$
(17) \t\t 2\phi(u_{n,r}) = c_n(r)
$$

and

(18)
$$
\phi'(u_{n,r}) = \lambda_{n,r} g'(u_{n,r}).
$$

We give below the proof when f satisfies (H1); the case in which it satisfies (H2) can be dealt with in a similar manner but is simpler as then $F(x, s) \geq 0$ and thus $\phi(u) \geq \phi_0(u)$.

(i) To prove that ϕ is bounded below on M_r , for each $r > 0$, we first note that (H) implies that

 $|F(x,s)| \leq c|s|^p + b(x)|s|$

so that, by the Schwarz inequality,

(19)
$$
\int_{\mathbb{R}^N} |F(x, u(x))| dx \leq c \int_{\mathbb{R}^N} |u(x)|^p dx + d \left(\int_{\mathbb{R}^N} |u(x)|^2 dx \right)^{1/2}
$$

where $d = |b|_2$. Similarly

(20)
$$
\int_{\mathbb{R}^N} |f(x,u(x))u(x)| dx \leq c \int_{\mathbb{R}^N} |u(x)|^p dx + d \left(\int_{\mathbb{R}^N} |u(x)|^2 dx \right)^{1/2}.
$$

Next we use inequality (4) with $\gamma = \beta$; on setting $2\alpha = (p - \beta) = (p - 2)N/2$, this becomes

(21)
$$
|u|_p^p \leq C |u|_2^{\beta} |u|_{1,2,q}^{2\alpha}
$$

and we conclude that on M_r ,

(22)
$$
\int_{\mathbb{R}^N} |F(x, u(x))| dx \leq c r^{\beta} |u|_{1,2,q}^{2\alpha} + r d.
$$

This implies that, in particular,

(23)
$$
2\phi(u) = 2\phi_0(u) + 2\int_{\mathbb{R}^N} F(x, u(x))dx
$$

$$
\geq |u|_{1,2,q}^2 - cr^{\beta} |u|_{1,2,q}^{2\alpha} - rd \quad (u \in M_r).
$$

The desired result now follows since the assumption $p < 2 + 4N^{-1}$ is equivalent to α < 1. In fact this shows that ϕ is *coercive on* M_r , that is, $\phi(u) \to \infty$ if $|u|_{1,2,q} \rightarrow \infty, u \in M_r.$

(ii) (The Palais-Smale condition). We have to show that any sequence (u_n) in M_r along which $\phi(u_n)$ is bounded and $\phi'_r(u_n) \to 0$ contains a convergent subsequence; here ϕ'_r denotes the derivative of ϕ along M_r , namely

$$
\phi'_r(u) = \phi'(u) - r^{-2}(\phi'(u)u)g'(u).
$$

Define operators A, B, C in H by the rules that for all $u, v \in H$,

$$
(Au, v) = \int_{\mathbb{R}^N} (\nabla u \cdot \nabla v + quv + f(x, u)v) dx
$$

= (u, v) + (Cu, v),

$$
(Bu, v) = \int_{\mathbb{R}^N} uv dx,
$$

where (\cdot, \cdot) stands for the inner product in H. Thus

$$
\phi'(u)v=(Au,v),\quad g'(u)v=(Bu,v)
$$

for all $u, v \in H$. Hence

$$
\phi'_{r}(u)v = (Au, v) - r^{-2}(Au, u)(Bu, v)
$$

and the condition $\phi'_r(u_n) \to 0$ in the dual H' of H is equivalent to

(24)
$$
A_r(u_n) := Au_n - r^{-2}(Au_n, u_n)Bu_n \to 0
$$

in H. The key fact in the proof that the Palais-Smale condition holds is that *B and C are compact.* To show this, first note that if G denotes the Nemytskii operator induced by f , then C can be viewed as the composition

$$
H \xrightarrow{i} L^p(\mathbb{R}^N) \xrightarrow{G} L^{p'}(\mathbb{R}^N) \approx (L^p(\mathbb{R}^N))' \xrightarrow{i^*} H' \approx H
$$

where \approx denotes isometric isomorphism; thus essentially, $C = i^* \circ G \circ i$. By the growth assumption on $f, G: L^p(\mathbb{R}^N) \to L^{p'}(\mathbb{R}^N)$ is continuous and maps bounded sets onto bounded sets (see [6]); since i is compact, by Theorem 2, it follows that C is compact. The compactness of B is established in a similar manner.

Now let (u_n) be a sequence in M_r such that $(\phi(u_n))$ is bounded and $A_r(u_n) \rightarrow$ 0. Then for some $c_0 > 0$ and all $n \in \mathbb{N}$, it follows from (23) that

$$
c_0 \geq 2\phi(u_n) \geq |u_n|_{1,2,q}^2 - cr^{\beta} |u_n|_{1,2,q}^{2\alpha} - rd,
$$

and so $|u_n|_{1,2,q} \leq c_1$ for some c_1 ; that is, (u_n) is bounded. Since B is compact, there is a subsequence of (u_n) , denoted again by (u_n) for convenience, such that (Bu_n) is convergent. Also, the real sequence with nth term

$$
(Au_n, u_n) = |u_n|_{1,2,q}^2 + (Cu_n, u_n)
$$

is bounded and we may assume, by passage to a subsequence, that it converges, too; thus by (24), (Au_n) converges. But $A = I + C$, where I is the identity map; as C is compact we may again suppose that (Cu_n) is convergent, and so (u_n) is convergent, as required.

(iii) We now prove the relations (14) concerning $u_{m,r}$ and $\lambda_{m,r}$ on the assumption that the critical levels $c_m(r) \to \infty$ as $m \to \infty$. For a proof that this assumption holds we refer the reader to [4] (a similar argument appears on page 365 of Krasnosel'skii's book [6]); the argument hinges upon the properties of the genus together with the facts that ϕ is coercive on M_r and M_r is weakly closed in H since H is compactly embedded in $L^2(\mathbb{R}^N)$.

First observe that, by (19) and (4) (with $\gamma = 0$)

$$
2\phi(u) = 2\phi_0(u) + 2\int_{\mathbb{R}^N} F(x, u(x))dx \leq |u|_{1,2,q}^2 + c|u|_{1,2,q}^p + d|u|_{1,2,q}.
$$

Since $2\phi(u_{n,r}) = c_n(r) \to \infty$, it follows that $|u_{n,r}|_{1,2,q} \to \infty$. Moreover, by (18),

(25)
$$
r^{2} \lambda_{n,r} = \phi'(u_{n,r}) u_{n,r} = \int_{\mathbb{R}^{N}} \{ |\nabla u_{n,r}|^{2} + qu_{n,r}^{2} + f(x, u_{n,r}) u_{n,r} \} dx.
$$

From (20) we see that, just as in the proof of (22), we have

$$
\int_{\mathbb{R}^N} |f(x,u)u|dx \leq c r^{\beta} |u|_{1,2,q}^{2\alpha} + r d
$$

for all $u \in M_r$. Thus

$$
r^{2} \lambda_{n,r} \geq | u_{n,r} |_{1,2,q}^{2} - c r^{\beta} | u_{n,r} |_{1,2,q}^{2\alpha} - r d.
$$

As $|u_{n,r}|_{1,2,q} \to \infty$ and $\alpha < 1$, this implies that $\lambda_{n,r} \to \infty$ as $n \to \infty$. The proof of Theorem 3 is complete. |

4. Asymptotic behaviour of eigenvalues

Here we improve the result obtained in Theorem 3 that the 'non-linear' eigenvalues $\lambda_{n,r}$ tend to ∞ as $n \to \infty$ by comparing them with the eigenvalues of the linear problem (L). To do this we use the following

LEMMA 4: Let q be as in Theorem 3 and let $\{\lambda_n^0 : n \in \mathbb{N}\}\$ be the set of all *eigenvaJues* of *(L), arranged in increasing order and repeated according* to mu/ *tiplicities.* Then for each $r > 0$,

(26)
$$
r^2 \lambda_n^0 = \inf_{K_n(r)} \sup_K 2\phi_0(u)
$$

where $K_n(r)$ is as in (15).

This is a reformulation, based on the properties of the genus, of the Courant minimax principle: for the proof, see [3] or (in a slightly different context) Section 6.7 of Berger's book [1].

THEOREM 5: *Let q be as in Theorem 3; assume that f satisfies (0) and both (H1) and (H2). For each* $r > 0$ *, let* $\lambda_{n,r}$ *be the eigenvalues of (NL) given by Theorem 3. Then for any* $r > 0$,

$$
\lambda_{n,r} = \lambda_n^0 + O((\lambda_n^0)^\alpha), \quad \alpha = (p-2)N/4 < 1.
$$

Proof'. By the estimate (22),

(27)

$$
\phi(u) = \phi_0(u) + \int_{\mathbb{R}^N} F(x, u(x)) dx
$$

$$
\leq \phi_0(u) + cr^{\beta} (\phi_0(u))^{\alpha} + rd
$$

for all $u \in M_r$. If $g : \mathbb{R} \to \mathbb{R}$ is a continuous non-decreasing function, it is straightforward to check that for any $n \in \mathbb{N}$,

$$
\inf_{K_n(r)} \sup_K g(2\phi_0(u)) = g\bigg(\inf_{K_n(r)} \sup_K 2\phi_0(u)\bigg),
$$

so that, if $2\phi(u) \leq g(2\phi_0(u))$ on M_r , then Lemma 4 shows that

$$
c_n(r)=\inf_{K_n(r)}\sup_K 2\phi(u)\leq \inf_{K_n(r)}\sup_K g(2\phi_0(u))=g(r^2\lambda_n^0).
$$

Using this with $g(t) = t + cr^{\beta}t^{\alpha} + rd$ we have, by (27),

$$
c_n(r) \leq r^2 \lambda_n^0 + c r^{\beta + 2\alpha} (\lambda_n^0)^{\alpha} + r d.
$$

Also, by the sign assumption (H2),

$$
\phi(u)=\phi_0(u)+\int_{\mathbb{R}^N}F(x,u(x))dx\geq \phi_0(u),
$$

and thus

$$
c_n(r) \geq \inf_{K_n(r)} \sup_K 2\phi_0(u) = r^2 \lambda_n^0.
$$

We therefore have that

(28)
$$
|c_n(r)-r^2\lambda_n^0|\leq cr^{\beta+2\alpha}(\lambda_n^0)^{\alpha}+rd.
$$

On the other hand, (17) and (18) yield

$$
c_n(r)-r^2\lambda_{n,r}=2\phi(u_{n,r})-\phi'(u_{n,r})u_{n,r}
$$

and hence, writing for simplicity u_n instead of $u_{n,r}$,

$$
c_n(r) - r^2 \lambda_{n,r} = \int_{\mathbb{R}^N} \{ |\nabla u_n|^2 + qu_n^2 + 2F(x, u_n(x)) \} dx
$$

$$
- \int_{\mathbb{R}^N} \{ |\nabla u_n|^2 + qu_n^2 + f(x, u_n(x)) u_n \} dx
$$

$$
= \int_{\mathbb{R}^N} \{ 2F(x, u_n(x)) - f(x, u_n(x)) u_n \} dx.
$$

Use of (22) and the similar bound for $\int f(x, u)u dx$ thus gives

(29)
\n
$$
|c_n(r) - r^2 \lambda_{n,r}| \leq cr^{\beta} (\phi_0(u_n))^{\alpha} + rd
$$
\n
$$
\leq cr^{\beta} (\phi(u_n))^{\alpha} + rd
$$
\n
$$
\leq cr^{\beta} (c_n(r))^{\alpha} + rd.
$$

Note that the above estimates hold under the 'general' growth condition (H). However, under the restriction $p \in [2, 2 + 4/N)$ imposed by (H1), then $\alpha =$ $(p-2)N/4 < 1$ and (28) gives in particular

$$
c_n(r) \sim r^2 \lambda_n^0
$$

as $n \to \infty$, for each fixed $r > 0$. Together with (29) this yields

$$
|c_n(r) - r^2 \lambda_{n,r}| \leq c r^{\beta + 2\alpha} (\lambda_n^0)^{\alpha} + r d,
$$

and (28) and (29) now give

$$
r^2|\lambda_{n,r} - \lambda_n^0| \le cr^p(\lambda_n^0)^\alpha + rd
$$

or

$$
|\lambda_{n,r} - \lambda_n^0| \le cr^{p-2} (\lambda_n^0)^\alpha + r^{-1} d.
$$

In other words,

$$
\lambda_{n,r} = \lambda_n^0 + O((\lambda_n^0)^\alpha)
$$

for each fixed $r > 0$; thus in particular $\lambda_{n,r} \sim \lambda_n^0$ as $n \to \infty$. The proof of the Theorem is complete. |

Note that if q satisfies appropriate additional conditions, then the asymptotic estimate (A) holds for $N_0(\lambda) = \sum_{\lambda^0 \leq \lambda} 1$, and in fact $N_0(\lambda)$ is bounded above and below by constant multiples of λ^a for some $a > 0$: see [5], Chapter XI, §3. Theorem 5 then shows that if q satisfies these extra conditions, then for each $r>0,$

$$
N_r(\lambda) := \sum_{\lambda_{n,r} \leq \lambda} 1 \sim \omega_N (2\pi)^{-N} \int_{\mathbb{R}^N} (\lambda - q(x))_+^{N/2} dx
$$

as $\lambda \to \infty$.

References

- [1] M. S. Berger, *Nonlinearity and Functional Analysis,* Academic Press, New York, 1977.
- [2] F. E. Browder, *Existence theorems* for *nonlinear partial differential equations,* Proc. A.M.S. Symp. Pure Math. 16 (1970), 1-60.
- [3] R. Chiappinelli, On *the* eigenvalues and *the* spectrum for a *class ofsemilinear elliptic operators,* Boll. U.M.I. 4B (1985), 869-882.
- [4] R. Chiappinelli, On the eigenvalue problem for *quasilinear elliptic* operators, in *"Constantin Carath~odory: An International Tribute"* (T. M. Rassias, ed.), World Scientific Publ., 1991.
- [5] D. E. Edmunds and W. D. Evans, *Spectral Theory and Differential Operators,* Clarendon Press, Oxford, 1987.
- [6] M. A. Krasnosel'skii, *Topological Methods in the Theory of Nonlinear Integral Equations,* Pergamon Press, Oxford, 1964.
- [7] V. B. Moscatelli and M. Thompson, *Asymptotic distribution* of *Liusternik-Schnirel'mann eigenvalues for elliptic nonlinear* operators, Proc. Edinburgh Math. **Soc. 33** (1990), 381-403.
- [8] P. H. Rabinowitz, Some aspects of nonlinear eigenvaJue *problems,* Rocky Mt. J. Math. 3 (1973), 161-202.