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ABSTRACT 

- -A .  + qu + / ( z ,  u) = )~u, . E W~'2(RN) 

is considered, where q is bounded below and q(z) --* co as Izl --. vo. Un- 

der appropriate conditions on the perturbation term f(z,  u) it is shown 
that given any r > 0, (*) has an infinite sequence (Aa,r).EN of eigenval- 
ues, each A.,~ being associated with an eigenfunction ua,r which satisfies 
fitN lu",~l 2 = r2" Information about the behaviour of An,r for hrge n 
is provided. The proofs rely on the compactness of the embedding of a 
certain weighted Sobolov space in an LP space; this is proved in w 

1. I n t r o d u c t i o n  

Let  q be  a s m o o t h  rea l -va lued  funct ion  on R ~v ( N  >_ 3) such t h a t  q(x) ~ c~ as 

Ixl --* vr a n d  suppose  t h a t  q is b o u n d e d  below by some pos i t ive  number .  T h e n  

i t  is wel l -known t h a t  the  p r o b l e m  

(L) - A u  + qu = ~u, u E W I ' 2 ( R  ~v) 
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has a sequence (A~ of positive eigenvalues, each repeated according to multi- 

plicity, with A ~ < A~ for all n E bl and A ~ ~ co as n ~ co. These may 

be characterised, by the classical Courant principle, as minimax values of the 

quadratic functional ~0, where 

~o(,,) = ~ ,, {Iv,~( ,)? + qC:)l , ,C,)?}a,,  

on the surface {u : fR" lu(=)l ~d= = constant}. Note that ~0 is well-defined for 
precisely those u belonging to the weighted Sobolev space 

which is plainly contained in W1,2(RN); the discreteness of the spectrum of 
-A + q is equivalent to the compactness of the embedding of W~,2(R N) in 

L2(R N) (see [5], Chap. VIII). Under appropriate additional conditions on q 

the asymptotic behaviour of the counting function 

No(1):= ~ i 
~o.<~ 

can be determined: it then turns out (see [5], Chap. XI) that as A ~ co, 

CA) NoCA) ~ ~N(2.) -N/,,,, CA - qC,))+~/2a. 

where WN is the volume of the unit ball in R N and g(A) ~ A(A) means that 

g(A)/h(A) ~ 1 as A --* co. A particular case in which formula (A) holds occurs 

(see [5], Chap XI) when there is a constant a > 1 and positive constants al, a2, a3 

such that for all z, II E R N, 

.,(l,l" - I) < qCx) < .2(l,l" + 1) 

and 

Iq (x )  - q (Y) l  -< "~ I~ - y l C m = { l ~ l ,  ly l } ) ' - ' .  

In the present paper we consider non-linear perturbations of problem (L) of 

the form 

(NL) - A u  + qu + f ( z ,u )  = Au, u E WI'2(RN), 
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where it is supposed that  

f : R N • R --~ R is continuous and such that for some 

(H) a > 0 and b E L2(RN), 

If(z, s)[ < alsl'-' + b(z), 2 < p < 2N/(N - 2) 

for all z 6 R N and all s 6 R. Under this assumption, the functional 

r ~N {~ [Vu(z)[2 + ~ q(z)[u(z)[2 +F(z ,u ( z ) ) }dx ,  

where F(x,u) = J: f(z,s)ds, is wen-defied and of class C 1 on WJa(RN), and 
(weak) solutions of (NL) can be sought as critical points of 4 under the constraint 

f,N lu(x)E~d~ = constant. Now if WJa(R N) is compactly embedded in U(RN), 
where p is as in (H), then r will satisfy the Palais-Smale condition, so that if in 

addition, 

(O) f (x , - - s )  = --f(z,  s) for all (z, s) 6 R N • R, 

then a standard application of the Liusternik-Schnirel'mann (LS) minimax the- 

Dry ([2],[8]) will establish the existence of infinitely many eigenvalue-eigenfuction 

pairs solving (NL). 

Thus as in the linear case, the existence of countably many eigenvalues of (NL) 

hinges on the fact that a certain embedding is compact. In w we use a simple 

interpolation argument to prove that if 1 _< t < N and t _< p < t*, where t* is 

the Sobolev conjugate of t, then W$"(R N) is compactly embedded in LP(RN). 

In the subsequent sections we use a similar interpolation inequality, giving a 

bound for the L p norm of u in terms of its L ~ and W 1,2 norms, first to verify the 

requirements of the LS theory and then to estimate the eigenvalues of (NL). Our 

final result is as follows: 

THEOREM: Assume that f satisfies (0) and (H) with 2 _< p < 2 + 4N -1, and 

suppose also that f(z, ,)s > 0 for all (x, s) 6 R N x R. Then for each r > 0, (NL) 

has an infinite sequence (An,r)nEN of eigenvalues, each A.,. being associated with 

an eigenfunction u . , .  satisfying fan [u.,.(x)[2dx = r 2, such that 

~.,, = ~ + o((~~176 

where a = (p - 2)N/4. 

Under suitable extra conditions on q it then follows that as A --+ oo, 

g,(~) := ~ 1 ~~N(2~) -N ~ (~-q(x))~/2d~. 
A.,, <~ N 
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For work on the asymptotic distribution of eigenvalues of quasilinear elliptic op- 

erators on bounded subsets of R N we refer to Chiappinelli ([3],[4]) and Moscatelli 

and Thompson [7]. 

2. I n t e r p o l a t i o n  inequal i t ies  an d  c o m p a c t n e s s  

We recall that when t E [1, oo) the norm on the Sobolev space Wt't(R N) is [ �9 [ 1,t, 

where 

l u l ' l , ,  = {Ivu( )l' + 

given any measurable subset • of R N and any p E [1, oo] we shM1 denote the 

norm on LP(fl) by I " I p,fl, writing I " I p,R~ = I �9 I p for simplicity. For any 

q : R u --* R which is measurable and positive almost everywhere, the weighted 

Sobolov space W$,'(R u )  is defined to be the space of all (equivalence classes 

of) real functions u with distributional derivatives au (i = 1, N)  such that . ~  , 

is finite. If there is a positive constant c such that q(x) > c for all x E R N, then 

W'$J(R N) is a Banach space when endowed with the norm [ �9 I 1,t,r if N > t, it 

is continuously embedded in LP(R N) for all p E [t, t*], where t* = N t / ( N  - t) is 

the Sobolev conjugate of t. Indeed, for any such q, clearly 

(1) l ul 1,t < const.] u I x,t,q, 

that is, W$'*(R N) is continuously embedded in WI' t(RN).  Moreover, we know 

that W$, '(R N) is continuously embedded in LP(R N) for any p e [t, ff] (see [5], 

Theorem V.3.7); that is, 

(2) [u[, _< const, l u I ,.,. 

Our object here is to establish the compactnea, of the embedding of W~'t(R N) 

in LP(R N) under appropriate conditions. We begin with an interpolation in- 

equality. 

PROPOSITION i: Let q : R N ~ R be measurabJe and such that for some c > O, 

q(x) > c t'or a/l z E R 2v, ]ett  E [1, N)  and p E [t, t*], and define ~ = ~(p) by 

(3)  = t(t" - p ) / ( t *  - O. 
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Then given any 7 E [0, f~(p)], there exists C > 0 such that for a/l u E W~"(RN), 

(4) I~,1; < Cl ul ;' lul ' -" - -  l , t , q "  

Moreover, i f  t < p < t*, then there is a positive constant C such that for all 

measurable subsets ~ o f R  N and all u q W~'t(RN), 

I ul ; , ,  < CQ(fi)l ul p - -  l ~ t , q "  
(5) 

where 

Q(fl) = I1/ql ~/` 

Proof." (i) If 7 = 0, (4) follows directly from (1) and (2). If 0 < 7 < t, then by 

H61der's inequality, 

that is, 

(6) 

where 

(7) s = ( p  - , y ) t l ( t  - , y ) .  

Note that  s _> t for any 7 E (0, t), while s < t* if, and only if, 7 -< 3(P). It follows 

that if p E (t, t*], then 7 -< B(P) < t and (4) results from (6) and (2). In the 

remaining case, in which 7 = 3(P) = t = p, (4) is trivial. 

(ii) To prove (5) we argue in a similar fashion. For any measurable fl C R N 

we have 

lu(~)l'd~ = L(q(z))-Pl'(q(z))~l'lu(z)lPdz 
< I 1/ql ~ L(q(~)Y/'I,,(~)I'~. 

= t and the proof of (5) is thus accomplished. If p = t, then 3 

If t < p < t* , put 

L(q( ,))~/'lu(~)lp~: = ~ {(q(~)'/'l"(~)l}%'(x)l'-~d~. 
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Thus the use of Hblder's inequality as above, with 7 replaced by/~, yields 

(q(x))'/t,u(x),Vdz < ( ~ q(x),u(z),tdx) ' / t '  u, r - ,  
- -  (p-#)tl(t-#) 

_< c l  ~1 ~,,,,I ~1 '-~l,,,q 
= cI ~1 p 1,t,q" 

The inequality (5) is now immediate. | 

THEOREM 2: Let q be as in Proposition 1 and suppose that q(z) --+ oo as Izl --+ 
oo; let t 6 [1,N) and t < p < t*. Then the embedding of W#,t(R N) in LP(R N) is 
compact. 

Proof.: Let (u,.) be a bounded sequence in W~,t(RN), so that there exists M > 0 

such that for all n 6 N, 

(8) l u.I ,,t,q < M 

As in Proposition 1 let Q(ft) = 1 l/q] ,/t and for each R > 0 set Qa  = Q(fta) ,  oo,~' 

where aR  = {x �9 RN; Ix[ _> R}. From (5) and (8) we have for all m,n �9 N, 

~.,  l=.,(z) - u.(z)l'dz = /I.I<R lum(z) - u,,(z)['dz + far lu,,,(z) - u.(z)l'dz 

_< [ lu,,,(z) - u,,(x)lPdz + CQR(2M) p. 
I<R 

The assumptions on q imply that QR --+ 0 as R --+ or; thus given any ~ > 0, 

there exists R0 > 0 such that for all re, n � 9  N and all R > Ro, 

~ ]Um(X)--Un(x)lPdx<--flxl<R 'Urn(X)-Un(X)lPdx"]'~" 

Since Wl,t(f~) is compactly embedded in Lp(O) when f~ = B(O, R), the open 

ball in R N with centre 0 and radius R, we see that there is a subsequence (un(t)) 

of (un) which converges in LP(RN), and the result follows. I 

3. Existence  of  eigenvalues  

We say that (u, A) is an eigenfunction-eigenvalue pair of (NL) if u E H := 

W~,~(RN), u # 0, ~ e R = d  

(9) + + =  vdx 
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for all v E H; it is assumed that N > 3. The function f is subject to the condition 

(H) 

f : R N x R ~ R is continuous and such that for some a > 0 

and b 6 L2(RN), 

I f(z ,  s)[ < alsl p-~ + b(~) for some p E [2, 2 N I ( N  - 2)] and all 

(x,s) ~ R N x R. 

Setting F(z ,  u) = fo u f ( x ,  s)ds and 

(10) 

(11) 

we see that (9) may be rewritten as 

(12) r  

1 

= ~0(.) + s  f(~, ~(~))d~, 

1 s lu lZdz  ' a(u) = ~ ,, 

for all v E H,  

where ~'(u),g'(u) denote the derivatives of ~,g at the point u. Thus to find 

eigenfunctions of (NL) with given LZ(R N) norm, for fax u z &  = r2, say, consists 

in finding critical points of ~ on the manifold 

the corresponding eigenvahes appearing as Lagrange multipliers. Note that if 

(u, A) is such a solution pair, then A = r - 2 r  as follows from (12) on taking 
V = U .  

THEOREM 3: Let q be as in Theorem 2; assume that (H) and (0)  hold and that 

either 

(H1) (H) holds with 2 < p < 2 + 4N -1 

or  

(a2) f(~, ~)s >_ 0 eor all (~ , , )  ~ R N • R. 

Then given any r > 0, there are denumerably many eigenfunction-eigenvaiue 

pairs (u.,r, An,r) of (NL) with fan u~,rdz = r2 for ali n E N, while as n ~ ~ ,  

J~/, (Ivu"'rlZ + qu~'r)dz --,  ~ ,  A..~ ~ 0o. (14) 
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Proof." For each r > 0 and n E N set 

(15) K , ( r )  = {K C M r :  K compact and symmetric, 7 (K)  > n} 

(where 7 (K)  denotes the genus of K [8], corresponding to the original category 
of Liusternik and Schnirel'marm) and 

(16) c a ( r ) =  inf sup2r 
Kn(r) K 

By the Liusternik-Sehnirel'mann principle (see, for example, Theorem 20 in 

Browder [2]), it win be enough to show that r is bounded below on Mr and 

satisfies the Palais--Smale condition on Mr to ensure that the c.(r) are attained 

and are critical levels of r on Mr; that is, there exist u. , r  E Mr, A..r E R such 

that 

(17) 2r 

and 

(18) r  = .~. ,~g'(u. ,~) .  

We give below the proof when f satisfies (H1); the case in which it satisfies (H2) 

can be dealt with in a similar manner but  is simpler as then F(x, s) >_ 0 and thus 

r > r 
(i) To prove that r is bounded below on Mr, for each r > 0, we first note that 

(H) implies that 

[F(z,s)[ _< c[s[ p + b(z)[s[ 

so that,  by the Schwarz inequality, 

(19) ~ [F(z'u(x))ldx < c fa" ,u(x)l'dz + d( ~N 'u(x)12dx) 1/2 

where d = I bl 5. Similarly 

(20) ~ ,f(x,u(z))u(z)ldx < c ~. ,u(z)l'dz + d( ~N lu(z)12dz) 1/2 

Next we use inequality (4) with 7 = #; on setting 2a = (p - #) = (p - 2)N/2,  

this becomes 

(21) I ul ~ < cl ul ~ I ul ~ - -  1 , 2 , r  
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and we conclude that on Mr, 

(22) fK IF(x'u(z))ldz < cr/31 ul 2~ N --  1,2,q + rd. 

This implies that, in particular, 

2r = 2r + 2 [ F(z,,`(z))dx 
JR N 

(23) > I "12 - ' : 'J ' l  ,`1 ~" - rd (,` �9 Mr) .  - -  1 , 2 , q  1 ,2 ,q  

The desired result now follows since the assumption p < 2 + 4N -1 is equivalent 

to a < 1. In fact this shows that r is coercive on Mr, that is, r --* ov if 

I,`11,~,q -- '  ~ ,  u �9 Mr .  

(ii) (The Palais-Smale condition). We have to show that any sequence (u.)  

in Mr along which r is bounded and r ~ 0 contains a convergent 

subsequence; here r denotes the derivative of r along Mr, namely 

r  = r  - r - 2 ( r  

Define operators A, B, C in H by the rules that for all ,`, v �9 H, 

(A,`, v) = [ (Vu. Vv + quv + f(x,,`)v)dx 
J R  N 

= (,`, ,,) + (c , ` , , , ) ,  
f 

(Bu, v) = ] uvdx, 
J R  N 

where (-, .) stands for the inner product in H. Thus 

r = (Au, v), g'(u)v = (Bu, v) 

for all u, v E H. Hence 

~'(,`)v = (A,`, v) - r-2(A,`,,`)(B,`, v) 

and the condition r  --+ 0 in the dual H' of H is equivalent to 

(24) A.(,` .)  := A,`. - r -2(A, ` . , , ` . )Bu.  ~ 0 
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in H. The key fact in the proof that the Palais-Smale condition holds is that 

B and C are compact. To show this, first note that if G denotes the Nemytskii 

operator induced by f ,  then C can be viewed as the composition 

i" H' H ~+ LP(R N) _~G Lp,(RN) ~ (LP(RN))  , ~ ,~ H 

where ~. denotes isometric isomorphism; thus essentially, C = i* o G o i. By 

the growth assumption on f ,  G : LP(R N) ~ Lf (R  N) is continuous and maps 

bounded sets onto bounded sets (see [6]); since i is compact, by Theorem 2, it 

follows that C is compact. The compactness of B is established in a similar 

manner. 

Now let (u,)  be a sequence in Mr such that (r  is bounded and Ar(un) "* 

0. Then for some co > 0 and all n E N, it follows from (23) that 

co > 2r > I ",.,I 2 - J I  ".',l 2,, - -  - -  1 , 2 , q  1 , 2 , q  - -  rd, 

and so [u .  I 1,2,q -< cl for some cl; that is, (u.)  is bounded. Since B is compact, 

there is a subsequence of (u.),  denoted again by (u.)  for convenience, such that 

( B u . )  is convergent. Also, the real sequence with n th term 

(Au.,u.) = I u.l ~,~,~ + (cu.,~.) 

is bounded and we may assume, by passage to a subsequence, that it converges, 

too; thus by (24), (Au , )  converges. But A = I +  C, where I is the identity map; 

as C is compact we may again suppose that (Cun) is convergent, and so (un) is 

convergent, as required. 

(iii) We now prove the relations (14) concerning um,r and ~m,r on the as- 

sumption that the critical levels Cm(r) "--+ oo as m ---+ oo. For a proof that this 

assumption holds we refer the reader to [4] (a similar argument appears on page 

365 of Krasnosel'skii's book [6]); the argument hinges upon the properties of the 

genus together with the facts that r is coercive on Mr and Mr is weakly closed 

in H since H is compactly embedded in LZ(RN). 

First observe that, by (19) and (4) (with 7 = 0) 

2r  f ( z , u ( z ) ) d z < l u l  2 c[ r dlu[ 2r = u[ 1,2,q + N -- 1,2,q ~ 1,2,q. 

Since 2r = c.(r)  ~ cr it follows that I =.,rl 1,2, ,  - +  r162 Moreover, by (18), 

r2~.,r = r = Ja[~ {Iw":I2 + qu~"'r + f(~' ~. ,r)~.:}d~. (25) 
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From (20) we see that,  just as in the proof of (22), we have 

f ly(z,u)uldz <cral ,,I ~ N -- 1,2,q + rd 

for all u E Mr. Thus 

" % , r  > I "-,"1 ~ -- C""I U.,rl ~ ' ~  - rd. -- 1,2,q 1,2,q 

As I u,,,r] 1,2,q ~ oo and a < 1, this implies that $,,,r ~ oo as n ~ oo. The 

proof of Theorem 3 is complete. | 

4. A s y m p t o t i c  b e h a v i o u r  o f  e igenvalues 

Here we improve the result obtained in Theorem 3 that the 'non-linear' eigen- 

values Sn,r tend to co as n ~ oo by comparing them with the eigenvalues of the 

linear problem (L). To do this we use the following 

LEMMA 4: Let q be as in Theorem 3 and let {A ~ : n E N} be the set of a/] 

eigenvaJues of (L), arranged in increasing order and repeated according to mu/- 

tiplidties. Then for each r > 0, 

(26)  2 0 r An = inf sup2~b0(u) 
K.(r) X 

where K, (r )  is as in (15). 

This is a reformulation, based on the properties of the genus, of the Courant 

minimax principle: for the proof, see [3] or (in a slightly different context) Section 

6.7 of Berger's book [1]. 

THEOREM 5: Let q be as in Theorem 3; assume that f satisfies (0)  and both 

(H1) and (H2). For each r > O, let A.,r be the eigenvalues of (NL) given by 

Theorem 3. Then for any r > O, 

Proof'. 

(27) 

.x..,. = ,~o + o ( ( ,~o)o) ,  ,,, = (p _ 2 )N ' /4  < 1. 

By the estimate (22), 

4(u)  = 40(u) + j /~.  FCz, ~(z) )dz 

_< ~0( . )  + c~P(~0(.)) ~ + rd 
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for all u E Mr. If g : R -'-+ R is a continuous non-decreasing function, it is 

straightforward to check that for any n E N, 

inf supg(2~0(u)) = 9( inf sup2~0(u)), 
K.(r) K \K.(r) K 

so that, if 2~(u) < g(2~0(u)) on Mr, then Lemma 4 shows that 

c,,(r) = inf sup2~(u) < inf supg(2~o(u)) = g(r2A~ 
K.( r )  K - - K . ( r )  K 

Using this with g(t) = t + cr/~t ~ + rd we have, by (27), 

c,(,+) < ,.~,+o j+2o(.xo)o + ,+d. 

Also, by the sign assumption (H2), 

~(.) = ~0( . )  + [ F(x ,  ~(x))d~ _> ~0(-) ,  
JR N 

and thus 

c,(r) > inf sup2~0(u) = r2A,.~ 
- -  K . ( r )  K 

We therefore have that 

#+2a 0 a (28) l c , ( , . ) - , .~A~ < +,. (A,) +,.d. 

On the other hand, (17) and (18) yield 

c . ( . )  - . ~ . , r  = 2~( . . , r )  - r  

and hence, writing for simplicity u .  instead of u . , r ,  

c"('+) - "mA"'r = L '[Iv'"l+ + qu+" + 2F(z, u . ( z ) ) }dx  

- ~.,,. {lv,,,,l + + q=~. + .t+(x,,,,(:,:)),,,.,}d~ 

~,, {2F(z, u.(z)) - f(z, u.(z))u.}dz. 

Use of (22) and the similar bound for f f(z,  u)udz thus gives 

l+.(r) - r+A.,rl _< +,-"(+So(,+.)) + + ,-a 
< J(+( , , . ) )+ '  + ,+d 

(~9) < J(+.( , - ) )+ + ,-a. 
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Note that the above estimates hold under the 'general' growth condition (H). 

However, under the restriction p E [2, 2 + 4/N) imposed by (H1), then a = 

(p - 2)N/4 < 1 and (28) gives in particular 

as n ~ co, for each fixed r > 0. Together with (29) this yields 

Ic.(,) - ~2~.,.I --- J + ~ ( k ~  ~ + ,.d, 

and (28) and (29) now give 

o r  

In other words, 

Ikn,,- ~~ <_ c,p-~(k~ ~ +,-~d. 

kn.r = k~ + OCCkO) o) 

for each fixed r > 0; thus in particular kn,r ~ A~ as n ~ eo. The proof of the 

Theorem is complete. | 

Note that  if q satisfies appropriate additional conditions, then the asymptotic 

estimate (A) holds for N0(k) -- ~xo._<x 1, and in fact N0(k) is bounded above 

and below by constant multiples of k a for some a > 0: see [5], Chapter XI, w 

Theorem 5 then shows that if q satisfies these extra conditions, then for each 

r > 0 ,  

N~Ck):= ~ 1~~N(2~) - N s  (k-q(x))N/2a~ 
An,r<X tr 

as k ~ CO. 
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