EIGENVALUE ASYMPTOTICS AND A NON-LINEAR SCHRÖDINGER EQUATION

BY

R. CHIAPPINELLI

Dipartimento di Matematica, Università della Calabria 87036 Arcavacata di Rende (Cs), Italy

AND

D. E. Edmunds

Mathematics Division, University of Sussex Falmer, Brighton BN1 9QH, England

ABSTRACT

The equation

(*)
$$-\Delta u + qu + f(x, u) = \lambda u, \quad u \in W^{1,2}(\mathbb{R}^N)$$

is considered, where q is bounded below and $q(x) \to \infty$ as $|x| \to \infty$. Under appropriate conditions on the perturbation term f(x, u) it is shown that given any r > 0, (*) has an infinite sequence $(\lambda_{n,r})_{n \in \mathbb{N}}$ of eigenvalues, each $\lambda_{n,r}$ being associated with an eigenfunction $u_{n,r}$ which satisfies $\int_{\mathbb{R}^N} |u_{n,r}|^2 = r^2$. Information about the behaviour of $\lambda_{n,r}$ for large n is provided. The proofs rely on the compactness of the embedding of a certain weighted Sobolov space in an L^p space; this is proved in §2.

1. Introduction

Let q be a smooth real-valued function on \mathbb{R}^N $(N \ge 3)$ such that $q(x) \to \infty$ as $|x| \to \infty$, and suppose that q is bounded below by some positive number. Then it is well-known that the problem

(L)
$$-\Delta u + qu = \lambda u, \quad u \in W^{1,2}(\mathbb{R}^N)$$

Received July 25, 1991

has a sequence (λ_n^0) of positive eigenvalues, each repeated according to multiplicity, with $\lambda_n^0 \leq \lambda_{n+1}^0$ for all $n \in \mathbb{N}$ and $\lambda_n^0 \to \infty$ as $n \to \infty$. These may be characterised, by the classical Courant principle, as minimax values of the quadratic functional ϕ_0 , where

$$\phi_0(u) = \frac{1}{2} \int_{\mathbb{R}^N} \{ |\nabla u(x)|^2 + q(x) |u(x)|^2 \} dx,$$

on the surface $\{u : \int_{\mathbb{R}^N} |u(x)|^2 dx = \text{constant}\}$. Note that ϕ_0 is well-defined for precisely those u belonging to the weighted Sobolev space

$$W_q^{1,2}(\mathbb{R}^N) := \bigg\{ u : \int_{\mathbb{R}^N} (|\nabla u|^2 + qu^2) dx < \infty \bigg\},$$

which is plainly contained in $W^{1,2}(\mathbb{R}^N)$; the discreteness of the spectrum of $-\Delta + q$ is equivalent to the compactness of the embedding of $W_q^{1,2}(\mathbb{R}^N)$ in $L^2(\mathbb{R}^N)$ (see [5], Chap. VIII). Under appropriate additional conditions on q the asymptotic behaviour of the counting function

$$N_0(\lambda) := \sum_{\lambda_n^0 \leq \lambda} 1$$

can be determined: it then turns out (see [5], Chap. XI) that as $\lambda \to \infty$,

(A)
$$N_0(\lambda) \sim \omega_N (2\pi)^{-N} \int_{\mathbb{R}^N} (\lambda - q(x))_+^{N/2} dx$$

where ω_N is the volume of the unit ball in \mathbb{R}^N and $g(\lambda) \sim h(\lambda)$ means that $g(\lambda)/h(\lambda) \to 1$ as $\lambda \to \infty$. A particular case in which formula (A) holds occurs (see [5], Chap XI) when there is a constant a > 1 and positive constants a_1, a_2, a_3 such that for all $x, y \in \mathbb{R}^N$,

$$a_1(|x|^a - 1) \le q(x) \le a_2(|x|^a + 1)$$

and

$$|q(x) - q(y)| \le a_3 |x - y| (\max\{|x|, |y|\})^{a-1}.$$

In the present paper we consider non-linear perturbations of problem (L) of the form

(NL)
$$-\Delta u + qu + f(x, u) = \lambda u, \quad u \in W^{1,2}(\mathbb{R}^N),$$

where it is supposed that

(H)
$$\begin{cases} f: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R} \text{ is continuous and such that for some} \\ a > 0 \text{ and } b \in L^2(\mathbb{R}^N), \\ |f(x,s)| \le a|s|^{p-1} + b(x), \quad 2 \le p \le 2N/(N-2) \end{cases}$$

for all $x \in \mathbb{R}^N$ and all $s \in \mathbb{R}$. Under this assumption, the functional

$$\phi(u) = \int_{\mathbb{R}^N} \left\{ \frac{1}{2} |\nabla u(x)|^2 + \frac{1}{2} q(x) |u(x)|^2 + F(x, u(x)) \right\} dx,$$

where $F(x, u) = \int_0^u f(x, s) ds$, is well-defined and of class C^1 on $W_q^{1,2}(\mathbb{R}^N)$, and (weak) solutions of (NL) can be sought as critical points of ϕ under the constraint $\int_{\mathbb{R}^N} |u(x)|^2 dx = \text{constant}$. Now if $W_q^{1,2}(\mathbb{R}^N)$ is compactly embedded in $L^p(\mathbb{R}^N)$, where p is as in (H), then ϕ will satisfy the Palais-Smale condition, so that if in addition,

(0)
$$f(x,-s) = -f(x,s)$$
 for all $(x,s) \in \mathbb{R}^N \times \mathbb{R}_2$

then a standard application of the Liusternik-Schnirel'mann (LS) minimax theory ([2],[8]) will establish the existence of infinitely many eigenvalue-eigenfuction pairs solving (NL).

Thus as in the linear case, the existence of countably many eigenvalues of (NL) hinges on the fact that a certain embedding is compact. In §2 we use a simple interpolation argument to prove that if $1 \leq t < N$ and $t \leq p < t^*$, where t^* is the Sobolev conjugate of t, then $W_q^{1,t}(\mathbb{R}^N)$ is compactly embedded in $L^p(\mathbb{R}^N)$. In the subsequent sections we use a similar interpolation inequality, giving a bound for the L^p norm of u in terms of its L^2 and $W_q^{1,2}$ norms, first to verify the requirements of the LS theory and then to estimate the eigenvalues of (NL). Our final result is as follows:

THEOREM: Assume that f satisfies (O) and (H) with $2 \le p < 2 + 4N^{-1}$, and suppose also that $f(x,s)s \ge 0$ for all $(x,s) \in \mathbb{R}^N \times \mathbb{R}$. Then for each r > 0, (NL) has an infinite sequence $(\lambda_{n,r})_{n \in \mathbb{N}}$ of eigenvalues, each $\lambda_{n,r}$ being associated with an eigenfunction $u_{n,r}$ satisfying $\int_{\mathbb{R}^N} |u_{n,r}(x)|^2 dx = r^2$, such that

$$\lambda_{n,r} = \lambda_n^0 + O((\lambda_n^0)^\alpha),$$

where $\alpha = (p-2)N/4$.

Under suitable extra conditions on q it then follows that as $\lambda \to \infty$,

$$N_r(\lambda) := \sum_{\lambda_{n,r} \leq \lambda} 1 \sim \omega_N (2\pi)^{-N} \int_{\mathbb{R}^N} (\lambda - q(x))_+^{N/2} dx.$$

For work on the asymptotic distribution of eigenvalues of quasilinear elliptic operators on *bounded* subsets of \mathbb{R}^N we refer to Chiappinelli ([3],[4]) and Moscatelli and Thompson [7].

2. Interpolation inequalities and compactness

We recall that when $t \in [1, \infty)$ the norm on the Sobolev space $W^{1,t}(\mathbb{R}^N)$ is $|\cdot|_{1,t}$, where

$$|u|_{1,t}^{t} = \int_{\mathbb{R}^{N}} \{ |\nabla u(x)|^{t} + |u(x)|^{t} \} dx;$$

given any measurable subset Ω of \mathbb{R}^N and any $p \in [1, \infty]$ we shall denote the norm on $L^p(\Omega)$ by $|\cdot|_{p,\Omega}$, writing $|\cdot|_{p,\mathbb{R}^N} = |\cdot|_p$ for simplicity. For any $q: \mathbb{R}^N \to \mathbb{R}$ which is measurable and positive almost everywhere, the weighted Sobolov space $W_q^{1,t}(\mathbb{R}^N)$ is defined to be the space of all (equivalence classes of) real functions u with distributional derivatives $\frac{\partial u}{\partial x_i}$ $(i = 1, \ldots, N)$ such that

$$|u|_{1,t,q} := \left\{ \int_{\mathbb{R}^N} (|\nabla u|^t + q|u|^t) dx \right\}^{1/t}$$

is finite. If there is a positive constant c such that $q(x) \ge c$ for all $x \in \mathbb{R}^N$, then $W_q^{1,t}(\mathbb{R}^N)$ is a Banach space when endowed with the norm $|\cdot|_{1,t,q}$; if N > t, it is continuously embedded in $L^p(\mathbb{R}^N)$ for all $p \in [t, t^*]$, where $t^* = Nt/(N-t)$ is the Sobolev conjugate of t. Indeed, for any such q, clearly

(1)
$$|u|_{1,t} \leq \text{const.} |u|_{1,t,q}$$

that is, $W_q^{1,t}(\mathbb{R}^N)$ is continuously embedded in $W^{1,t}(\mathbb{R}^N)$. Moreover, we know that $W_q^{1,t}(\mathbb{R}^N)$ is continuously embedded in $L^p(\mathbb{R}^N)$ for any $p \in [t, t^*]$ (see [5], Theorem V.3.7); that is,

$$|u|_{p} \leq \operatorname{const.} |u|_{1,t}.$$

Our object here is to establish the *compactness* of the embedding of $W_q^{1,t}(\mathbb{R}^N)$ in $L^p(\mathbb{R}^N)$ under appropriate conditions. We begin with an interpolation inequality.

PROPOSITION 1: Let $q : \mathbb{R}^N \to \mathbb{R}$ be measurable and such that for some c > 0, $q(x) \ge c$ for all $x \in \mathbb{R}^N$, let $t \in [1, N)$ and $p \in [t, t^*]$, and define $\beta = \beta(p)$ by

(3)
$$\beta(p) = t(t^* - p)/(t^* - t).$$

Vol. 81, 1993

Then given any $\gamma \in [0, \beta(p)]$, there exists C > 0 such that for all $u \in W_q^{1,t}(\mathbb{R}^N)$,

$$(4) \qquad |u|_{p}^{p} \leq C|u|_{t}^{\gamma} |u|_{1,t,q}^{p-\gamma}$$

Moreover, if $t \leq p < t^*$, then there is a positive constant C such that for all measurable subsets Ω of \mathbb{R}^N and all $u \in W_q^{1,t}(\mathbb{R}^N)$,

(5)
$$|u|_{p,\Omega}^{p} \leq CQ(\Omega)|u|_{1,t,q}^{p}.$$

where

$$Q(\Omega) = |1/q|_{\infty,\Omega}^{\beta/t}.$$

Proof: (i) If $\gamma = 0$, (4) follows directly from (1) and (2). If $0 < \gamma < t$, then by Hölder's inequality,

$$\begin{split} \int_{\mathbb{R}^N} |u(x)|^p dx &= \int_{\mathbb{R}^N} |u(x)|^{\gamma} |u(x)|^{p-\gamma} dx \\ &\leq \left(\int_{\mathbb{R}^N} |u(x)|^t dx \right)^{\gamma/t} \left(\int_{\mathbb{R}^N} |u(x)|^{(p-\gamma)t/(t-\gamma)} dx \right)^{(t-\gamma)/t}, \end{split}$$

that is,

$$(6) |u|_p^p \le |u|_t^{\gamma} |u|_s^{p-\gamma}$$

where

(7)
$$s = (p - \gamma)t/(t - \gamma).$$

Note that $s \ge t$ for any $\gamma \in (0, t)$, while $s \le t^*$ if, and only if, $\gamma \le \beta(p)$. It follows that if $p \in (t, t^*]$, then $\gamma \le \beta(p) < t$ and (4) results from (6) and (2). In the remaining case, in which $\gamma = \beta(p) = t = p$, (4) is trivial.

(ii) To prove (5) we argue in a similar fashion. For any measurable $\Omega \subset \mathbb{R}^N$ we have

$$\int_{\Omega} |u(x)|^p dx = \int_{\Omega} (q(x))^{-\beta/t} (q(x))^{\beta/t} |u(x)|^p dx$$
$$\leq |1/q| \mathop{}_{\infty,\Omega}^{\beta/t} \int_{\Omega} (q(x))^{\beta/t} |u(x)|^p dx.$$

If p = t, then $\beta = t$ and the proof of (5) is thus accomplished. If t , put

$$\int_{\Omega} (q(x))^{\beta/t} |u(x)|^{p} dx = \int_{\Omega} \{ (q(x)^{1/t} |u(x)|\}^{\beta} |u(x)|^{p-\beta} dx.$$

Thus the use of Hölder's inequality as above, with γ replaced by β , yields

$$\begin{split} \int_{\Omega} (q(x))^{\beta/t} |u(x)|^{p} dx &\leq \left(\int_{\mathbb{R}^{N}} q(x) |u(x)|^{t} dx \right)^{\beta/t} |u|^{p-\beta}_{(p-\beta)t/(t-\beta)} \\ &\leq C |u|^{\beta}_{1,t,q} |u|^{p-\beta}_{1,t,q} \\ &= C |u|^{p}_{1,t,q}. \end{split}$$

The inequality (5) is now immediate.

THEOREM 2: Let q be as in Proposition 1 and suppose that $q(x) \to \infty$ as $|x| \to \infty$; let $t \in [1, N)$ and $t \le p < t^*$. Then the embedding of $W_q^{1,t}(\mathbb{R}^N)$ in $L^p(\mathbb{R}^N)$ is compact.

Proof: Let (u_n) be a bounded sequence in $W_q^{1,t}(\mathbb{R}^N)$, so that there exists M > 0 such that for all $n \in \mathbb{N}$,

$$|u_n|_{1,t,q} \leq M$$

As in Proposition 1 let $Q(\Omega) = |1/q|_{\infty,\Omega}^{\beta/t}$, and for each R > 0 set $Q_R = Q(\Omega_R)$, where $\Omega_R = \{x \in \mathbb{R}^N; |x| \ge R\}$. From (5) and (8) we have for all $m, n \in \mathbb{N}$,

$$\begin{split} \int_{\mathbb{R}^N} |u_m(x) - u_n(x)|^p dx &= \int_{|x| < R} |u_m(x) - u_n(x)|^p dx + \int_{\Omega_R} |u_m(x) - u_n(x)|^p dx \\ &\leq \int_{|x| < R} |u_m(x) - u_n(x)|^p dx + CQ_R(2M)^p. \end{split}$$

The assumptions on q imply that $Q_R \to 0$ as $R \to \infty$; thus given any $\varepsilon > 0$, there exists $R_0 > 0$ such that for all $m, n \in \mathbb{N}$ and all $R > R_0$,

$$\int_{\mathbb{R}^N} |u_m(x) - u_n(x)|^p dx \leq \int_{|x| < R} |u_m(x) - u_n(x)|^p dx + \varepsilon.$$

Since $W^{1,t}(\Omega)$ is compactly embedded in $L^p(\Omega)$ when $\Omega = B(O, R)$, the open ball in \mathbb{R}^N with centre O and radius R, we see that there is a subsequence $(u_{n(k)})$ of (u_n) which converges in $L^p(\mathbb{R}^N)$, and the result follows.

3. Existence of eigenvalues

We say that (u, λ) is an eigenfunction-eigenvalue pair of (NL) if $u \in H := W_q^{1,2}(\mathbb{R}^N), u \neq 0, \lambda \in \mathbb{R}$ and

(9)
$$\int_{\mathbb{R}^N} (\nabla u \cdot \nabla v + quv + f(x, u)v) dx = \lambda \int_{\mathbb{R}^N} uv dx$$

Vol. 81, 1993

for all $v \in H$; it is assumed that $N \geq 3$. The function f is subject to the condition

(H)
$$\begin{cases} f: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R} \text{ is continuous and such that for some } a > 0 \\ \text{and } b \in L^2(\mathbb{R}^N), \\ |f(x,s)| \le a|s|^{p-1} + b(x) \text{ for some } p \in [2, 2N/(N-2)] \text{ and all} \\ (x,s) \in \mathbb{R}^N \times \mathbb{R}. \end{cases}$$

Setting $F(x,u) = \int_0^u f(x,s) ds$ and

$$\phi(u) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + q|u|^2) dx + \int_{\mathbb{R}^N} F(x, u(x)) dx$$
$$= \phi_0(u) + \int f(x, u(x)) dx,$$

(10)
$$= \phi_0(u) + \int_{\mathbb{R}^N} f(x, u(x)) dx$$

(11)
$$g(u) = \frac{1}{2} \int_{\mathbb{R}^N} |u|^2 dx,$$

we see that (9) may be rewritten as

(12)
$$\phi'(u)v = \lambda g'(u)v \quad \text{for all } v \in H,$$

where $\phi'(u), g'(u)$ denote the derivatives of ϕ, g at the point u. Thus to find eigenfunctions of (NL) with given $L^2(\mathbb{R}^N)$ norm, for $\int_{\mathbb{R}^N} u^2 dx = r^2$, say, consists in finding critical points of ϕ on the manifold

(13)
$$M_r = \left\{ u \in H : g(u) = \frac{1}{2}r^2 \right\},$$

the corresponding eigenvalues appearing as Lagrange multipliers. Note that if (u, λ) is such a solution pair, then $\lambda = r^{-2}\phi'(u)u$, as follows from (12) on taking v = u.

THEOREM 3: Let q be as in Theorem 2; assume that (H) and (O) hold and that either

(H1) (H) holds with
$$2 \le p < 2 + 4N^{-1}$$

or

(H2)
$$f(x,s)s \ge 0$$
 for all $(x,s) \in \mathbb{R}^N \times \mathbb{R}$.

Then given any r > 0, there are denumerably many eigenfunction-eigenvalue pairs $(u_{n,r}, \lambda_{n,r})$ of (NL) with $\int_{\mathbb{R}^N} u_{n,r}^2 dx = r^2$ for all $n \in \mathbb{N}$, while as $n \to \infty$,

(14)
$$\int_{\mathbb{R}^N} (|\nabla u_{n,r}|^2 + q u_{n,r}^2) dx \to \infty, \quad \lambda_{n,r} \to \infty.$$

Isr. J. Math.

Proof: For each r > 0 and $n \in \mathbb{N}$ set

(15)
$$K_n(r) = \{K \subset M_r : K \text{ compact and symmetric, } \gamma(K) \ge n\}$$

(where $\gamma(K)$ denotes the genus of K [8], corresponding to the original category of Liusternik and Schnirel'mann) and

(16)
$$c_n(r) = \inf_{K_n(r)} \sup_K 2\phi(u).$$

By the Liusternik-Schnirel'mann principle (see, for example, Theorem 20 in Browder [2]), it will be enough to show that ϕ is bounded below on M_r and satisfies the Palais-Smale condition on M_r to ensure that the $c_n(r)$ are attained and are critical levels of ϕ on M_r ; that is, there exist $u_{n,r} \in M_r$, $\lambda_{n,r} \in \mathbb{R}$ such that

(17)
$$2\phi(u_{n,r}) = c_n(r)$$

and

(18)
$$\phi'(u_{n,r}) = \lambda_{n,r}g'(u_{n,r}).$$

We give below the proof when f satisfies (H1); the case in which it satisfies (H2) can be dealt with in a similar manner but is simpler as then $F(x, s) \ge 0$ and thus $\phi(u) \ge \phi_0(u)$.

(i) To prove that ϕ is bounded below on M_r , for each r > 0, we first note that (H) implies that

 $|F(x,s)| \le c|s|^p + b(x)|s|$

so that, by the Schwarz inequality,

(19)
$$\int_{\mathbb{R}^{N}} |F(x, u(x))| dx \leq c \int_{\mathbb{R}^{N}} |u(x)|^{p} dx + d \left(\int_{\mathbb{R}^{N}} |u(x)|^{2} dx \right)^{1/2}$$

where $d = |b|_2$. Similarly

(20)
$$\int_{\mathbb{R}^{N}} |f(x,u(x))u(x)| dx \leq c \int_{\mathbb{R}^{N}} |u(x)|^{p} dx + d \left(\int_{\mathbb{R}^{N}} |u(x)|^{2} dx \right)^{1/2}.$$

Next we use inequality (4) with $\gamma = \beta$; on setting $2\alpha = (p - \beta) = (p - 2)N/2$, this becomes

(21)
$$|u|_{p}^{p} \leq C |u|_{2}^{\beta} |u|_{1,2,q}^{2\alpha}$$

and we conclude that on M_r ,

(22)
$$\int_{\mathbb{R}^{N}} |F(x, u(x))| dx \leq cr^{\beta} |u|_{1,2,q}^{2\alpha} + rd.$$

This implies that, in particular,

(23)
$$2\phi(u) = 2\phi_0(u) + 2\int_{\mathbb{R}^N} F(x, u(x))dx$$
$$\geq |u|_{1,2,q}^2 - cr^\beta |u|_{1,2,q}^{2\alpha} - rd \quad (u \in M_r).$$

The desired result now follows since the assumption $p < 2 + 4N^{-1}$ is equivalent to $\alpha < 1$. In fact this shows that ϕ is coercive on M_r , that is, $\phi(u) \to \infty$ if $|u|_{1,2,q} \to \infty, u \in M_r$.

(ii) (The Palais-Smale condition). We have to show that any sequence (u_n) in M_r along which $\phi(u_n)$ is bounded and $\phi'_r(u_n) \to 0$ contains a convergent subsequence; here ϕ'_r denotes the derivative of ϕ along M_r , namely

$$\phi'_r(u) = \phi'(u) - r^{-2}(\phi'(u)u)g'(u).$$

Define operators A, B, C in H by the rules that for all $u, v \in H$,

$$(Au, v) = \int_{\mathbb{R}^N} (\nabla u \cdot \nabla v + quv + f(x, u)v) dx$$
$$= (u, v) + (Cu, v),$$
$$(Bu, v) = \int_{\mathbb{R}^N} uv dx,$$

where (\cdot, \cdot) stands for the inner product in H. Thus

$$\phi'(u)v = (Au, v), \quad g'(u)v = (Bu, v)$$

for all $u, v \in H$. Hence

$$\phi_r'(u)v = (Au, v) - r^{-2}(Au, u)(Bu, v)$$

and the condition $\phi'_r(u_n) \to 0$ in the dual H' of H is equivalent to

(24)
$$A_r(u_n) := Au_n - r^{-2}(Au_n, u_n)Bu_n \to 0$$

in H. The key fact in the proof that the Palais-Smale condition holds is that B and C are *compact*. To show this, first note that if G denotes the Nemytskii operator induced by f, then C can be viewed as the composition

$$H \stackrel{i}{\hookrightarrow} L^{p}(\mathbb{R}^{N}) \stackrel{G}{\longrightarrow} L^{p'}(\mathbb{R}^{N}) \approx (L^{p}(\mathbb{R}^{N}))' \stackrel{i^{*}}{\hookrightarrow} H' \approx H$$

where \approx denotes isometric isomorphism; thus essentially, $C = i^* \circ G \circ i$. By the growth assumption on $f, G : L^p(\mathbb{R}^N) \to L^{p'}(\mathbb{R}^N)$ is continuous and maps bounded sets onto bounded sets (see [6]); since *i* is compact, by Theorem 2, it follows that *C* is compact. The compactness of *B* is established in a similar manner.

Now let (u_n) be a sequence in M_r such that $(\phi(u_n))$ is bounded and $A_r(u_n) \rightarrow 0$. Then for some $c_0 > 0$ and all $n \in \mathbb{N}$, it follows from (23) that

$$c_0 \geq 2\phi(u_n) \geq |u_n|_{1,2,q}^2 - cr^{\beta}|u_n|_{1,2,q}^{2\alpha} - rd,$$

and so $|u_n|_{1,2,q} \leq c_1$ for some c_1 ; that is, (u_n) is bounded. Since B is compact, there is a subsequence of (u_n) , denoted again by (u_n) for convenience, such that (Bu_n) is convergent. Also, the real sequence with n^{th} term

$$(Au_n, u_n) = |u_n|_{1,2,q}^2 + (Cu_n, u_n)$$

is bounded and we may assume, by passage to a subsequence, that it converges, too; thus by (24), (Au_n) converges. But A = I + C, where I is the identity map; as C is compact we may again suppose that (Cu_n) is convergent, and so (u_n) is convergent, as required.

(iii) We now prove the relations (14) concerning $u_{m,r}$ and $\lambda_{m,r}$ on the assumption that the critical levels $c_m(r) \to \infty$ as $m \to \infty$. For a proof that this assumption holds we refer the reader to [4] (a similar argument appears on page 365 of Krasnosel'skii's book [6]); the argument hinges upon the properties of the genus together with the facts that ϕ is coercive on M_r and M_r is weakly closed in H since H is compactly embedded in $L^2(\mathbb{R}^N)$.

First observe that, by (19) and (4) (with $\gamma = 0$)

$$2\phi(u) = 2\phi_0(u) + 2\int_{\mathbb{R}^N} F(x, u(x))dx \le |u|_{1,2,q}^2 + c|u|_{1,2,q}^p + d|u|_{1,2,q}.$$

Since $2\phi(u_{n,r}) = c_n(r) \to \infty$, it follows that $|u_{n,r}|_{1,2,q} \to \infty$. Moreover, by (18),

(25)
$$r^{2}\lambda_{n,r} = \phi'(u_{n,r})u_{n,r} = \int_{\mathbb{R}^{N}} \{ |\nabla u_{n,r}|^{2} + qu_{n,r}^{2} + f(x, u_{n,r})u_{n,r} \} dx.$$

Vol. 81, 1993

From (20) we see that, just as in the proof of (22), we have

$$\int_{\mathbb{R}^N} |f(x,u)u| dx \le cr^{\beta} |u|_{1,2,q}^{2\alpha} + rd$$

for all $u \in M_r$. Thus

$$r^{2}\lambda_{n,r} \geq |u_{n,r}|^{2}_{1,2,q} - cr^{\beta}|u_{n,r}|^{2\alpha}_{1,2,q} - rd.$$

As $|u_{n,r}|_{1,2,q} \to \infty$ and $\alpha < 1$, this implies that $\lambda_{n,r} \to \infty$ as $n \to \infty$. The proof of Theorem 3 is complete.

4. Asymptotic behaviour of eigenvalues

Here we improve the result obtained in Theorem 3 that the 'non-linear' eigenvalues $\lambda_{n,r}$ tend to ∞ as $n \to \infty$ by comparing them with the eigenvalues of the linear problem (L). To do this we use the following

LEMMA 4: Let q be as in Theorem 3 and let $\{\lambda_n^0 : n \in \mathbb{N}\}$ be the set of all eigenvalues of (L), arranged in increasing order and repeated according to multiplicities. Then for each r > 0,

(26)
$$r^2 \lambda_n^0 = \inf_{K_n(r)} \sup_K 2\phi_0(u)$$

where $K_n(r)$ is as in (15).

This is a reformulation, based on the properties of the genus, of the Courant minimax principle: for the proof, see [3] or (in a slightly different context) Section 6.7 of Berger's book [1].

THEOREM 5: Let q be as in Theorem 3; assume that f satisfies (O) and both (H1) and (H2). For each r > 0, let $\lambda_{n,r}$ be the eigenvalues of (NL) given by Theorem 3. Then for any r > 0,

$$\lambda_{n,r} = \lambda_n^0 + O((\lambda_n^0)^{\alpha}), \quad \alpha = (p-2)N/4 < 1.$$

Proof: By the estimate (22),

(27)
$$\phi(u) = \phi_0(u) + \int_{\mathbb{R}^N} F(x, u(x)) dx$$
$$\leq \phi_0(u) + cr^\beta(\phi_0(u))^\alpha + rd$$

Isr. J. Math.

for all $u \in M_r$. If $g : \mathbb{R} \to \mathbb{R}$ is a continuous non-decreasing function, it is straightforward to check that for any $n \in \mathbb{N}$,

$$\inf_{K_n(r)} \sup_K g(2\phi_0(u)) = g\bigg(\inf_{K_n(r)} \sup_K 2\phi_0(u)\bigg),$$

so that, if $2\phi(u) \leq g(2\phi_0(u))$ on M_r , then Lemma 4 shows that

$$c_n(r) = \inf_{K_n(r)} \sup_K 2\phi(u) \leq \inf_{K_n(r)} \sup_K g(2\phi_0(u)) = g(r^2\lambda_n^0).$$

Using this with $g(t) = t + cr^{\beta}t^{\alpha} + rd$ we have, by (27),

$$c_n(r) \leq r^2 \lambda_n^0 + cr^{\beta+2\alpha} (\lambda_n^0)^{\alpha} + rd.$$

Also, by the sign assumption (H2),

$$\phi(u) = \phi_0(u) + \int_{\mathbb{R}^N} F(x, u(x)) dx \ge \phi_0(u),$$

and thus

$$c_n(r) \geq \inf_{K_n(r)} \sup_K 2\phi_0(u) = r^2 \lambda_n^0.$$

We therefore have that

(28)
$$|c_n(r) - r^2 \lambda_n^0| \leq c r^{\beta + 2\alpha} (\lambda_n^0)^{\alpha} + rd.$$

On the other hand, (17) and (18) yield

$$c_n(r) - r^2 \lambda_{n,r} = 2\phi(u_{n,r}) - \phi'(u_{n,r})u_{n,r}$$

and hence, writing for simplicity u_n instead of $u_{n,r}$,

$$c_{n}(r) - r^{2}\lambda_{n,r} = \int_{\mathbb{R}^{N}} \{ |\nabla u_{n}|^{2} + qu_{n}^{2} + 2F(x, u_{n}(x)) \} dx$$
$$- \int_{\mathbb{R}^{N}} \{ |\nabla u_{n}|^{2} + qu_{n}^{2} + f(x, u_{n}(x))u_{n} \} dx$$
$$= \int_{\mathbb{R}^{N}} \{ 2F(x, u_{n}(x)) - f(x, u_{n}(x))u_{n} \} dx.$$

Use of (22) and the similar bound for $\int f(x, u)u dx$ thus gives

(29)
$$\begin{aligned} |c_n(r) - r^2 \lambda_{n,r}| &\leq cr^\beta (\phi_0(u_n))^\alpha + rd \\ &\leq cr^\beta (\phi(u_n))^\alpha + rd \\ &\leq cr^\beta (c_n(r))^\alpha + rd. \end{aligned}$$

Note that the above estimates hold under the 'general' growth condition (H). However, under the restriction $p \in [2, 2 + 4/N)$ imposed by (H1), then $\alpha = (p-2)N/4 < 1$ and (28) gives in particular

$$c_n(r) \sim r^2 \lambda_n^0$$

as $n \to \infty$, for each fixed r > 0. Together with (29) this yields

$$|c_n(r) - r^2 \lambda_{n,r}| \le c r^{\beta + 2\alpha} (\lambda_n^0)^{\alpha} + rd,$$

and (28) and (29) now give

$$r^2|\lambda_{n,r} - \lambda_n^0| \le cr^p(\lambda_n^0)^{lpha} + rd$$

or

$$|\lambda_{n,r} - \lambda_n^0| \le cr^{p-2} (\lambda_n^0)^{\alpha} + r^{-1} d.$$

In other words,

$$\lambda_{n,r} = \lambda_n^0 + O((\lambda_n^0)^{\alpha})$$

for each fixed r > 0; thus in particular $\lambda_{n,r} \sim \lambda_n^0$ as $n \to \infty$. The proof of the Theorem is complete.

Note that if q satisfies appropriate additional conditions, then the asymptotic estimate (A) holds for $N_0(\lambda) = \sum_{\lambda_n^0 \leq \lambda} 1$, and in fact $N_0(\lambda)$ is bounded above and below by constant multiples of λ^a for some a > 0: see [5], Chapter XI, §3. Theorem 5 then shows that if q satisfies these extra conditions, then for each r > 0,

$$N_r(\lambda) := \sum_{\lambda_{n,r} \leq \lambda} 1 \sim \omega_N (2\pi)^{-N} \int_{\mathbb{R}^N} (\lambda - q(x))_+^{N/2} dx$$

as $\lambda \to \infty$.

References

- M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.
- F. E. Browder, Existence theorems for nonlinear partial differential equations, Proc. A.M.S. Symp. Pure Math. 16 (1970), 1-60.

- [3] R. Chiappinelli, On the eigenvalues and the spectrum for a class of semilinear elliptic operators, Boll. U.M.I. 4B (1985), 869-882.
- [4] R. Chiappinelli, On the eigenvalue problem for quasilinear elliptic operators, in "Constantin Carathéodory: An International Tribute" (T. M. Rassias, ed.), World Scientific Publ., 1991.
- [5] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.
- [6] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1964.
- [7] V. B. Moscatelli and M. Thompson, Asymptotic distribution of Liusternik-Schnirel'mann eigenvalues for elliptic nonlinear operators, Proc. Edinburgh Math. Soc. 33 (1990), 381-403.
- [8] P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mt. J. Math. 3 (1973), 161-202.